精英家教网 > 高中数学 > 题目详情
17.已知$f(α)=\frac{{cos(\frac{π}{2}+α)•cos(2π-α)•sin(\frac{3π}{2}-α)}}{{sin(π-α)•sin(\frac{3π}{2}+α)}}$.
(1)化简f(α);
(2)若α是第三象限角,且$cos(α+\frac{π}{2})=\frac{1}{5}$,求f(α)的值.

分析 (1)由条件利用诱导公式进行化简所给的式子,可得结果.
(2)利用诱导公式求得sinα=-$\frac{1}{5}$,再利用同角三角函数的基本关系求得 cosα的值,可得f(α)的值.

解答 解:(1)$f(α)=\frac{{cos(\frac{π}{2}+α)•cos(2π-α)•sin(\frac{3π}{2}-α)}}{{sin(π-α)•sin(\frac{3π}{2}+α)}}$=$\frac{-sinα•cosα•(-cosα)}{sinα•(-cosα)}$=-cosα.
(2)由α是第三象限角,且$cos(α+\frac{π}{2})=\frac{1}{5}$,可得-sinα=$\frac{1}{5}$,即sinα=-$\frac{1}{5}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{2\sqrt{6}}{5}$,
故f(α)=-cosα=$\frac{2\sqrt{6}}{5}$.

点评 本题主要考查利用同角三角函数的基本关系,诱导公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知点A(1,y1),B(9,y2)是抛物线y2=2px(p>0)上的两点,y2>y1>0,点F是它的焦点,若|BF|=5|AF|,则y12+y2的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={-2,-1,0,1,2},B={x|x=3k-1,k∈z},则A∩B=(  )
A.{-2,-1,0,1,2}B.{-1,0,1}C.{-1,2}D.{-2,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设p:实数x满足x2-4ax+3a2<0,其中a>0;q:实数x满足$\frac{x-3}{x-2}$<0.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在区间(0,$\frac{π}{2}$)上的函数f(x)满足tanx•f′(x)<f(x),则下列选项中正确的是(  )
A.f($\frac{π}{6}$)sin1<$\frac{1}{2}$f(1)B.f($\frac{π}{6}$)sin1=$\frac{1}{2}$f(1)
C.f($\frac{π}{6}$)sin1>$\frac{1}{2}$f(1)D.无法确定f($\frac{π}{6}$)sin1与$\frac{1}{2}$f(1)的大小

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点(0,4)且与抛物线y2=8x只有一个公共点的直线共有(  )
A.0条B.1条C.2条D.3条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线ny2=x(n>0)的准线与圆x2+y2-8x-4y-5=0相切,则n的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线${C_1}:{x^2}=4y$的焦点F也是椭圆${C_2}:\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的一个焦点,C1与C2的公共弦的长为$2\sqrt{6}$.
(1)求椭圆C2的方程;
(2)经过点(-1,0)作斜率为k的直线l与曲线C2交于A,B两点,O是坐标原点,是否存在实数k,使O在以AB为直径的圆外?若存在,求k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x2-πx,α,β,γ∈(0,π),且sinα=$\frac{1}{3}$,tanβ=$\frac{5}{4}$,cosγ=-$\frac{1}{3}$,则(  )
A.f(α)>f(β)>f(γ)B.f(α)>f(γ)>f(β)C.f(β)>f(α)>f(γ)D.f(β)>f(γ)>f(α)

查看答案和解析>>

同步练习册答案