分析 (1)由条件利用诱导公式进行化简所给的式子,可得结果.
(2)利用诱导公式求得sinα=-$\frac{1}{5}$,再利用同角三角函数的基本关系求得 cosα的值,可得f(α)的值.
解答 解:(1)$f(α)=\frac{{cos(\frac{π}{2}+α)•cos(2π-α)•sin(\frac{3π}{2}-α)}}{{sin(π-α)•sin(\frac{3π}{2}+α)}}$=$\frac{-sinα•cosα•(-cosα)}{sinα•(-cosα)}$=-cosα.
(2)由α是第三象限角,且$cos(α+\frac{π}{2})=\frac{1}{5}$,可得-sinα=$\frac{1}{5}$,即sinα=-$\frac{1}{5}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{2\sqrt{6}}{5}$,
故f(α)=-cosα=$\frac{2\sqrt{6}}{5}$.
点评 本题主要考查利用同角三角函数的基本关系,诱导公式进行化简求值,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1,0,1,2} | B. | {-1,0,1} | C. | {-1,2} | D. | {-2,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f($\frac{π}{6}$)sin1<$\frac{1}{2}$f(1) | B. | f($\frac{π}{6}$)sin1=$\frac{1}{2}$f(1) | ||
| C. | f($\frac{π}{6}$)sin1>$\frac{1}{2}$f(1) | D. | 无法确定f($\frac{π}{6}$)sin1与$\frac{1}{2}$f(1)的大小 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(α)>f(β)>f(γ) | B. | f(α)>f(γ)>f(β) | C. | f(β)>f(α)>f(γ) | D. | f(β)>f(γ)>f(α) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com