| A. | y=cos2x-sin2x | B. | y=sin|x| | C. | y=sinx•cosx | D. | y=tan$\frac{x}{2}$ |
分析 化简函数的解析式,再利用函数y=Asin(ωx+φ)、y=Acos(ωx+φ)的周期为$\frac{2π}{ω}$,可得结论.
解答 解:由于y=cos2x-sin2x=cos2x,为偶函数,故排除A;
由于y=sin|x|为偶函数,故排除B;
由于y=sinx•cosx=$\frac{1}{2}$sin2x,为奇函数,且周期为$\frac{2π}{2}$=π,故满足条件;
由于y=tan$\frac{x}{2}$的周期为$\frac{π}{\frac{1}{2}}$=2π,故排除D,
故选:C.
点评 本题主要考查二倍角公式,函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)、y=Acos(ωx+φ)的周期为$\frac{2π}{ω}$,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0)∪($\frac{2}{3}$,+∞) | B. | ($\frac{2}{3}$,+∞) | C. | (-∞,-1)∪($\frac{2}{3}$,+∞) | D. | (-∞,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com