精英家教网 > 高中数学 > 题目详情
(2013•乐山二模)已知定义在R上的函数y=f(x)满足f(x+2)=f(x),当-1<x≤1时,f(x)=x3.若函数g(x)=f(x)-loga|x|恰有6个零点,则a(  )
分析:本题通过典型的作图画出loga|x|以及f(x)的图象,从图象交点上交点的不同,来判断函数零点个数,从而确定底数a的大小范围
解答:解:首先将函数g(x)=f(x)-loga|x|恰有6个零点,这个问题转化成f(x)=loga|x|的交点来解决.
数形结合:如图,f(x+2)=f(x),知道周期为2,当-1<x≤1时,f(x)=x3图象可以画出来,同理左右平移各2个单位,得到在(-7,7)上面的图象,以下分两种情况:
(1)当a>1时,loga|x|如图所示,左侧有4个交点,右侧2个,
此时应满足loga5≤1<loga7,即loga5≤logaa<loga7,所以5≤a<7.
(2)当0<a<1时,loga|x|与f(x)交点,左侧有2个交点,右侧4个,
此时应满足loga5>-1,loga7≤-1,即loga5<-logaa≤loga7,所以5<a-1≤7.故
1
7
≤a<
1
5

综上所述,a的取值范围是:5≤a<7或
1
7
≤a<
1
5

故选D选项
点评:本题考查函数零点应用转化为两个函数交点来判断,又综合了奇函数对称性对数运算等知识,属于较难的一类题,端点也要认真考虑,极容易漏掉端点
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•乐山二模)函数f(x)=Asin(ωx+?)(其中A>0,|?|<
π
2
)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山二模)两座灯塔A和B与海洋观察站C的距离都等于aKm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为
3
a
3
a
km.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山二模)已知数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足Sn=
n(an-a1)
2

(I)试判断数列{an}是否是等差数列,若是,求其通项公式,若不是,说明理由;
(II)令Pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
Tn是数列{Pn}
的前n项和,求证:Tn-2n<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山二模)已知f(x)=-
4+
1
x2
,点Pn(an,-
1
an+1
)
在曲线y=f(x)上(n∈N*)且a1=1,an>0.
(Ⅰ)求证:数列{
1
a
2
n
}
为等差数列,并求数列{an}的通项公式;
(Ⅱ)设数列{
a
2
n
a
2
n+1
}
的前n项和为Sn,若对于任意的n∈N*,存在正整数t,使得Snt2-t-
1
2
恒成立,求最小正整数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山二模)如图,已知抛物线y2=2px(p>0)的焦点F恰好是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点,且两条曲线交点的连线过点F,则该双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案