精英家教网 > 高中数学 > 题目详情
5.在△ABC中,若4(sin2A+sin2B-sin2C)=3sinA•sinB,则sin2$\frac{A+B}{2}$的值为(  )
A.$\frac{7}{8}$B.$\frac{3}{8}$C.$\frac{15}{16}$D.$\frac{11}{16}$

分析 先根据正弦定理找到角与边的关系,即用角的正弦表示出边,然后再用余弦定理可求出角C的余弦值,从而利用二倍角公式化简所求得到答案.

解答 解:在△ABC中,根据正弦定理设ka=sinA,kb=sinB,kc=sinC,
∵4(sin2A+sin2B-sin2C)=3sinA•sinB.
∴4(k2a2+k2b2-k2c2)=3ka•kb,即:a2+b2-c2=$\frac{3}{4}$a•b,
∴由余弦定理cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{\frac{3}{4}ab}{2ab}$=$\frac{3}{8}$.
∴sin2$\frac{A+B}{2}$=$\frac{1-cos(A+B)}{2}$=$\frac{1+cosC}{2}$=$\frac{1+\frac{3}{8}}{2}$=$\frac{11}{16}$.
故选:D.

点评 本题主要考查正弦定理和余弦定理,二倍角公式在解三角形中的应用.正弦定理与余弦定理在解三角形时有很大的用途,要给予重视,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数g(x)=x•f′(x)(其中f′(x)是f(x)的导函数) 的图象如图所示,则f(x)的极小值点是x=0,x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合M={x||x|=1},N={x|$\frac{1}{2}$<2x<4,x∈Z},则M∩N等于(  )
A.{-1,1}B.{1}C.{0}D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.两数7+3$\sqrt{5}$和7-3$\sqrt{5}$的等比中项和等差中项分别是(  )
A.2和3$\sqrt{5}$B.±2和3$\sqrt{5}$C.±2和7D.2和7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A,B,C所对的边为a,b,c,已知a=3,b=2$\sqrt{6}$,∠B=2∠A.cosA的值等于$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动$\frac{π}{6}$个单位长度,得到y=g(x)图象,求出y=g(x)在区间[0,$\frac{2π}{3}}$]上的最小值和取得最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,PC=2,E是PB上的点.
(1)求证:平面EAC⊥平面PBC;
(2)若E是PB的中点,求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.写出以下各数列的一个通项公式
(1)数列1,$\frac{2}{3}$,$\frac{3}{5}$,$\frac{4}{7}$,$\frac{5}{9}$,…
(2)数列$\frac{2}{3}$,-$\frac{4}{5}$,$\frac{6}{7}$,-$\frac{8}{9}$,…
(3)数列0.8,0.88,0.888,…

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,以F2为圆心,|F1F2|为半径的圆与双曲线在第一、二象限内依次交于A,B两点,若3|F1B|=|F2A|,则该双曲线的离心率是(  )
A.$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

同步练习册答案