精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-2|+2|x-a|(a∈R).
(Ⅰ)当a=1时,解不等式f(x)>3;
(Ⅱ)不等式f(x)≥1在区间(-∞,+∞)上恒成立,求实数a的取值范围.
(Ⅰ)当a=1时,f(x)=|x-2|+2|x-1|,
①当x≤1时,f(x)=2-x+2(1-x)=-3x+4,
由f(x)>3,得-3x+4>3,解得x<
1
3

x<
1
3

②1<x≤2时,f(x)=2-x+2(x-1)=x,
由f(x)>3,得x>3,
∴此时不等式无解;
③当x>2时,f(x)=x-2+2(x-1)=3x-4,
由f(x)>3,得3x-4>3,解得x>
7
3

∴x>
7
3

综上,不等式f(x)>3的解集为(-∞,
1
3
)∪(
7
3
,+∞).
(Ⅱ)f(x)≥1即|x-2|+2|x-a|≥1,
当|x-2|≥1,即x≤1或x≥3时,显然|x-2|+2|x-a|≥1对任意实数a恒成立;
∴丨x-2丨+2丨x-a丨≥1 对任意实数x恒成立,只须丨x-2丨+2丨x-a丨≥1 对x∈(1,3)恒成立.
(1)若x∈(1,2]时,得2|x-a|≥x-1,即a≥
3x-1
2
,或a≤
x+1
2
,x∈(1,2]恒成立,则a≥
5
2
,或a≤1;
(2)若当x∈(2,3)时,得2|x-a|≥3-x,即a≥
x+3
2
,或a≤
3x-3
2
对x∈(2,3)恒成立,则a≥3,或a≤
3
2

对(1)(2)中a的范围取交集,得a≤1或a≥3.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)是定义在R上的奇函数,且f(x-4)=-f(x),在[0,2]上f(x)是增函数,则下列结论:①若0<x1<x2<4,且x1+x2=4,则f(x1)+f(x2)>0;②若0<x1<x2<4,且x1+x2=5,则f(x1)>f(x2);③若方程f(x)=m在[-8,8]内恰有四个不同的角x1,x2,x3,x4,则x1+x2+x3+x4=±8,其中正确的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=log2
2-x
2+x
的图象(  )
A.关于直线y=-x对称B.关于原点对称
C.关于y轴对称D.关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+(lga+2)x+lgb满足f(-1)=-2且对于任意x∈R,恒有f(x)≥2x成立.
(1)求实数a,b的值;
(2)不等式f(x)≥a2-4a-15恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)为奇函数,x>0时为增函数且f(2)=0,则{x|f(x-2)>0}=(  )
A.{x|0<x<2或x>4}B.{x|x<0或x>4}
C.{x|x<0或x>6}D.{x|x<-2或x>2}

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x+a
1-x
(a∈R)

(1)若a=1,求f(x)的值域;
(2)若不等式f(x)≤2对x∈[-8,-3]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于函数y=f(x),x∈D,如果存在非零常数T,使对任意的x∈D都有f(x+t)=f(x)成立,就称T为该函数的周期.请根据以上定义解答下列问题:若y=f(x)是R上的奇函数,且满足f(x+5)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2014)=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:当x∈R时,不等式x2-4ax+2a+6≥0恒成立.
(1)求a的取值范围;
(2)在(1)的条件下,求函数f(a)=-a2+2a+3的最值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,若,则      

查看答案和解析>>

同步练习册答案