精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+(lga+2)x+lgb满足f(-1)=-2且对于任意x∈R,恒有f(x)≥2x成立.
(1)求实数a,b的值;
(2)不等式f(x)≥a2-4a-15恒成立,求a的取值范围.
(1)由f(-1)=-2知,lgb-lga+1=0①,∴
a
b
=10
②,
又f(x)≥2x恒成立,有x2+x•lga+lgb≥0恒成立,
故△=(lga)2-4lgb≤0.
将①式代入式得:(lgb)2-2lgb+1≤0,即(lgb-1)2≤0,
故lgb=1,即b=10,代入②得,a=100.
(2)要使f(x)≥a2-4a-15恒成立,只需a2-4a-15≤f(x)min
由(1)知f(x)=x2+4x+1=(x+2)2-3≥-3,
∴a2-4a-15≤-3,解得-2≤a≤6,
故实数a的取值范围是[-2,6].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知以T=4为周期的函数f(x)在(-1,3]上的解析式为f(x)=
-m|x|x∈(-1,1)
1-(x-2)2x∈[1,3]
,其中m>0,若方程3f(x)=x恰有5个实数解,则m的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)为奇函数,且在(0,+∞)上是增函数,又f(2)=0,则xf(x)<0(  )
A.(-2,0)∪(0,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的偶函数f(x),满足f(x+
1
2
)=-f(x+
3
2
)
,且在区间[-1,0]上为递增,则(  )
A.f(3)<f(
2
)<f(2)
B.f(2)<f(3)<f(
2
C.f(3)<f(2)<f(
2
D.f(
2
)<f(2)<f(3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)是R上的奇函数,当x>0时,f(x)=log2(x+1),则f(-15)=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)是定义在(-2,2)上的减函数,满足:f(-x)=-f(x),且f(m-1)+f(2m-1)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)=a-
2
2x+1
,其中a为常数;
(1)f(x)为奇函数,试确定a的值;
(2)若不等式f(x)+a>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=|x-2|+2|x-a|(a∈R).
(Ⅰ)当a=1时,解不等式f(x)>3;
(Ⅱ)不等式f(x)≥1在区间(-∞,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的最小值,则的取值范围为(   ).
A.[-1,2]B.[-1,0]C.[1,2]D.

查看答案和解析>>

同步练习册答案