精英家教网 > 高中数学 > 题目详情
已知:当x∈R时,不等式x2-4ax+2a+6≥0恒成立.
(1)求a的取值范围;
(2)在(1)的条件下,求函数f(a)=-a2+2a+3的最值.
(1)△=16a2-4(2a+6)≤0
-1≤a≤
3
2

(2)-1≤a≤
3
2
,f(a)=-a2+2a+3=-(a-1)2+4在[-1,1]单调递增,在[1,
3
2
]单调递减
当a=1时f(a)max=f(1)=4
当a=-1时,f(a)min=f(-1)=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知以T=4为周期的函数f(x)在(-1,3]上的解析式为f(x)=
-m|x|x∈(-1,1)
1-(x-2)2x∈[1,3]
,其中m>0,若方程3f(x)=x恰有5个实数解,则m的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的偶函数f(x),满足f(x+
1
2
)=-f(x+
3
2
)
,且在区间[-1,0]上为递增,则(  )
A.f(3)<f(
2
)<f(2)
B.f(2)<f(3)<f(
2
C.f(3)<f(2)<f(
2
D.f(
2
)<f(2)<f(3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=|x-2|+2|x-a|(a∈R).
(Ⅰ)当a=1时,解不等式f(x)>3;
(Ⅱ)不等式f(x)≥1在区间(-∞,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
1
22x+m•2x+1
的定义域为R,试求实数m的取值范围(  )
A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(0,2)D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数g(x)=logax,其中a>1.
(Ⅰ)当x∈[0,1]时,g(ax+2)>1恒成立,求a的取值范围;
(Ⅱ)设m(x)是定义在[s,t]上的函数,在(s,t)内任取n-1个数x1,x2,…,xn-2,xn-1,设x1<x2<…<xn-2<xn-1,令s=x0,t=xn,如果存在一个常数M>0,使得
n
i=1
|m(xi)-m(xi-1)|≤M
恒成立,则称函数m(x)在区间[s,t]上的具有性质P.
试判断函数f(x)=|g(x)|在区间[
1
a
a2]
上是否具有性质P?若具有性质P,请求出M的最小值;若不具有性质P,请说明理由.
(注:
n
i=1
|m(xi)-m(xi-1)|=|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知y=f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,则满足f(m)<f(1)的实数m的范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的最小值,则的取值范围为(   ).
A.[-1,2]B.[-1,0]C.[1,2]D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=若|f(x)|≥ax,则a的取值范围是 ( ).
A.(-∞,0] B.(-∞,1]C.[-2,1] D.[-2,0]

查看答案和解析>>

同步练习册答案