精英家教网 > 高中数学 > 题目详情
6.口袋中有n(n∈N*)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若P(X=2)=$\frac{7}{30}$,则n的值为7.

分析 x=2 说明第一次取出的是红球,第二次取出的是白球,取球方法数为A31•An1,所有的取球方法数An+32,利用P(X=2)=$\frac{7}{30}$,建立方程求出n的值.

解答 解:P(X=2)=$\frac{{A}_{3}^{1}{A}_{n}^{1}}{{A}_{n+3}^{2}}$=$\frac{3n}{(n+3)(n+2)}$=$\frac{7}{30}$,
即7n2-55n+42=0,
即(7n-6)(n-7)=0.
因为n∈N*,所以n=7.
故答案为:7.

点评 本题考查排列数公式的应用,确定随机变量的取值及取每个值时的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知a为实数,函数f(x)=x2-|x2-ax-2|在区间(-∞,-1)和(2,+∞)上单调递增,则a的取值范围为(  )
A.[1,8]B.[3,8]C.[1,3]D.[-1,8]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)是(-∞,+∞)上的减函数,则不等式f(2)<f($\frac{1}{x}$)的解集是(  )
A.(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,+∞)D.(-∞,0)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列各式的值:
(1)cos40°sin20°+cos20°sin40°
(2)cos$\frac{π}{8}$•sin$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a>b>c>0,则3a2+$\frac{1}{a(a-b)}$+$\frac{1}{ab}$-6ac+9c2的最小值为(  )
A.2B.4C.2$\sqrt{5}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.点P在正方形ABCD内,满足AP=2BP,CP=3BP,求∠APB的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,则输出的“S+n”的值为(  )
A.-21B.-20C.-19D.-18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={1,2,3,4},则集合B={x•y|x∈A,y∈A}中元素的个数是(  )
A.8B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果sin(π+A)=$\frac{1}{2}$,那么cos($\frac{3π}{2}$-A)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案