精英家教网 > 高中数学 > 题目详情
2.如果sin(π+A)=$\frac{1}{2}$,那么cos($\frac{3π}{2}$-A)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 由条件利用诱导公式求得 sinA=-$\frac{1}{2}$,再利用诱导公式求得要求式子的值.

解答 解:∵sin(π+A)=-sinA=$\frac{1}{2}$,
∴sinA=-$\frac{1}{2}$,
那么cos($\frac{3π}{2}$-A)=-sinA=$\frac{1}{2}$,
故选:A.

点评 本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.口袋中有n(n∈N*)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若P(X=2)=$\frac{7}{30}$,则n的值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数x,y满足不等式组$\left\{\begin{array}{l}y≥x\\ x+y-6≤0\\ 2x-y-2≥0\end{array}\right.$,且z=2x+y的最小值为m,最大值为n,则f(x)=x2-14x在区间[m,n]上的最大值和最小值之和为(  )
A.-94B.-97C.-93D.-90

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知an=$\left\{\begin{array}{l}{5n+1,n为奇数}\\{{2}^{\frac{n}{2}},n为偶数}\end{array}\right.$.
(1)求数列{an}的前10项和S10
(2)求数列{an}的前2k项和S2k

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\sqrt{x-4}$+$\sqrt{15-3x}$,下述判断中正确的是(  )
A.最大值是2,最小值是0B.最大值是3,最小值是2
C.最大值是3,最小值是1D.最大值是2,最小值是1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点F是抛物线C:y2=x的焦点,点S是抛物线C上在第一象限内的一点,且|SF|=$\frac{5}{4}$.以S为圆心的动圆与x轴分别交于两点A、B,延长SA,SB分别交抛物线C于M,N两点.
(1)当|AB|=2时,求圆S的方程;
(2)证明直线MN的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线y2=2px(p>0)上一点M(x0,8)到焦点的距离是10,则x0=(  )
A.1或8B.1或9C.2或8D.2或9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA丄底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中点.
(1)求证:AM∥平面SCD;
(2)求平面SCD与平面SAB所成的二面角的余弦值;
(3)设点N是直线CD上的动点,MN与平面SAB所成的角为θ,求sinθ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在正三棱锥P-ABC中,M是PC的中点,且AM⊥PB,AB=2$\sqrt{2}$,则正三棱锥P-ABC的外接球的表面积为12π.

查看答案和解析>>

同步练习册答案