精英家教网 > 高中数学 > 题目详情
7.已知实数x,y满足不等式组$\left\{\begin{array}{l}y≥x\\ x+y-6≤0\\ 2x-y-2≥0\end{array}\right.$,且z=2x+y的最小值为m,最大值为n,则f(x)=x2-14x在区间[m,n]上的最大值和最小值之和为(  )
A.-94B.-97C.-93D.-90

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求出最大值和最小值,结合一元二次函数的性质进行求解即可.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{y=x}\\{x+y-6=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$,j即A(3,3),
此时z=2x+y得z=2×3+3=9.即n=9,
当直线y=-2x+z经过点C时,直线y=-2x+z的截距最小,
此时z最小.
由$\left\{\begin{array}{l}{y=x}\\{2x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即C(2,2),
代入目标函数z=2x+y得z=2×2+2=6.
即m=6,
则f(x)=x2-14x=(x-7)2-49,
则函数在区间[m,n]上,即区间[6,9]上,
当x=7时,函数取得最小值-49,
当x=9时,函数取得最大值(9-7)2-49=4-49=-45,
则最大值和最小值为-49-45=-94,
故选:A

点评 本题主要考查线性规划和一元二次函数单调性的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设f(x)是(-∞,+∞)上的减函数,则不等式f(2)<f($\frac{1}{x}$)的解集是(  )
A.(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,+∞)D.(-∞,0)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,则输出的“S+n”的值为(  )
A.-21B.-20C.-19D.-18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={1,2,3,4},则集合B={x•y|x∈A,y∈A}中元素的个数是(  )
A.8B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C1:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)与抛物线C2:y2=$\frac{1}{2}$x在第一象限的交点A的横坐标为2,直线l:x-2y-$\sqrt{6}$=0过椭圆的一个焦点.
(1)求椭圆C1的方程;
(2)已知直线l'平行于直线l,且与椭圆C1交于不同的两点M,N,记直线AM的倾斜角θ1,直线AN的倾斜角为θ2,试探究θ12是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=Asin(ωx+φ)(|φ|<$\frac{π}{2}$)的部分图象如图所示,且线段PQ的长与函数f(x)的周期相等,则函数f(x)的解析式为f(x)=$\sqrt{3}$sin($\frac{π}{2}$x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知两定点A(-2,0)、B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹方程为(x-2)2+y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果sin(π+A)=$\frac{1}{2}$,那么cos($\frac{3π}{2}$-A)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{bx}{a{x}^{2}+c}$,f′(0)=9,其中a>0,b,c∈R,且b+c=10.
(1)求b,c的值及函数f(x)的单调区间;
(2)若在区间[1,2]上仅存在一个x0,使得f(x0)≥a,求实数a的值.

查看答案和解析>>

同步练习册答案