精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=Asin(ωx+φ)(|φ|<$\frac{π}{2}$)的部分图象如图所示,且线段PQ的长与函数f(x)的周期相等,则函数f(x)的解析式为f(x)=$\sqrt{3}$sin($\frac{π}{2}$x+$\frac{π}{6}$).

分析 由函数图象可得A,又由题意,可求T,利用周期公式可求ω,由f($\frac{2}{3}$)=$\sqrt{3}$sin($\frac{π}{2}×$$\frac{2}{3}$+φ)=$\sqrt{3}$,结合范围|φ|<$\frac{π}{2}$,可求φ的值,即可得解函数解析式.

解答 解:由函数图象可得,A=$\sqrt{3}$,
因为:线段PQ的长与函数f(x)的周期相等,
所以:PQ=$\frac{2\sqrt{3}}{cos30°}$=4,
所以可得:T=$\frac{2π}{ω}$=4,解得:ω=$\frac{π}{2}$,
由于:点($\frac{2}{3}$,$\sqrt{3}$)在函数图象上,
可得:f($\frac{2}{3}$)=$\sqrt{3}$sin($\frac{π}{2}×$$\frac{2}{3}$+φ)=$\sqrt{3}$,即:sin($\frac{π}{3}$+φ)=1,
解得:$\frac{π}{3}$+φ=2kπ+$\frac{π}{2}$,k∈Z,
解得:φ=2kπ+$\frac{π}{6}$,k∈Z,
又因为:|φ|<$\frac{π}{2}$,
所以,解得:φ=$\frac{π}{6}$.
故答案为:f(x)=$\sqrt{3}$sin($\frac{π}{2}$x+$\frac{π}{6}$).

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质的应用,考查了数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.锐角△ABC的三个内角A,B,C所对的边分别为a,b,c,设向量$\overrightarrow{m}$=(2,c),$\overrightarrow{n}$=($\frac{b}{2}$cosC-sinA,cosB),已知b=$\sqrt{3}$,且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角B;
(2)求△ABC面积的最大值及此时另外两个边a,c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2-4x+3=0作切线,切点分别为A,B,则四边形PADB面积的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知以抛物线x2=2py(p>0)的焦点为虚轴的一个端点的双曲线的标准方程为$\frac{x^2}{8}$-$\frac{y^2}{b^2}$=1(b>0),抛物线的一条与双曲线的渐近线平行的切线在y轴上的截距为-1,则p的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数x,y满足不等式组$\left\{\begin{array}{l}y≥x\\ x+y-6≤0\\ 2x-y-2≥0\end{array}\right.$,且z=2x+y的最小值为m,最大值为n,则f(x)=x2-14x在区间[m,n]上的最大值和最小值之和为(  )
A.-94B.-97C.-93D.-90

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.两条平行直线3x-4y-3=0和mx-8y+5=0之间的距离是(  )
A.$\frac{11}{10}$B.$\frac{8}{5}$C.$\frac{15}{7}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知an=$\left\{\begin{array}{l}{5n+1,n为奇数}\\{{2}^{\frac{n}{2}},n为偶数}\end{array}\right.$.
(1)求数列{an}的前10项和S10
(2)求数列{an}的前2k项和S2k

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点F是抛物线C:y2=x的焦点,点S是抛物线C上在第一象限内的一点,且|SF|=$\frac{5}{4}$.以S为圆心的动圆与x轴分别交于两点A、B,延长SA,SB分别交抛物线C于M,N两点.
(1)当|AB|=2时,求圆S的方程;
(2)证明直线MN的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(1,$\frac{\sqrt{6}}{2}$),且离心率等于$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(2,0)作直线PA,PB交椭圆于A,B两点,且满足PA⊥PB,试判断直线AB是否过定点,若过定点求出点坐标,若不过定点请说明理由.

查看答案和解析>>

同步练习册答案