分析 由函数图象可得A,又由题意,可求T,利用周期公式可求ω,由f($\frac{2}{3}$)=$\sqrt{3}$sin($\frac{π}{2}×$$\frac{2}{3}$+φ)=$\sqrt{3}$,结合范围|φ|<$\frac{π}{2}$,可求φ的值,即可得解函数解析式.
解答 解:由函数图象可得,A=$\sqrt{3}$,
因为:线段PQ的长与函数f(x)的周期相等,
所以:PQ=$\frac{2\sqrt{3}}{cos30°}$=4,
所以可得:T=$\frac{2π}{ω}$=4,解得:ω=$\frac{π}{2}$,
由于:点($\frac{2}{3}$,$\sqrt{3}$)在函数图象上,
可得:f($\frac{2}{3}$)=$\sqrt{3}$sin($\frac{π}{2}×$$\frac{2}{3}$+φ)=$\sqrt{3}$,即:sin($\frac{π}{3}$+φ)=1,
解得:$\frac{π}{3}$+φ=2kπ+$\frac{π}{2}$,k∈Z,
解得:φ=2kπ+$\frac{π}{6}$,k∈Z,
又因为:|φ|<$\frac{π}{2}$,
所以,解得:φ=$\frac{π}{6}$.
故答案为:f(x)=$\sqrt{3}$sin($\frac{π}{2}$x+$\frac{π}{6}$).
点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质的应用,考查了数形结合思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -94 | B. | -97 | C. | -93 | D. | -90 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{11}{10}$ | B. | $\frac{8}{5}$ | C. | $\frac{15}{7}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com