分析 (Ⅰ)利用椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(1,$\frac{\sqrt{6}}{2}$),且离心率等于$\frac{\sqrt{2}}{2}$,建立方程,求出a,b,即可求椭圆C的方程;
(Ⅱ)设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),把直线的方程与椭圆的方程联立可得根与系数的关系,再利用PA⊥PB,得(x1-2)(x2-2)+y1y2=0,即可得出m与k的关系,再由直线恒过定点的求法,从而得出答案.
解答 解:(Ⅰ)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(1,$\frac{\sqrt{6}}{2}$),且离心率等于$\frac{\sqrt{2}}{2}$,
∴$\frac{1}{{a}^{2}}+\frac{\frac{3}{2}}{{b}^{2}}$=1,$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}$=$\frac{1}{2}$,
∴a=2,b=$\sqrt{2}$,
∴椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1;
(Ⅱ)设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),
联立椭圆方程得(1+2k2)x2+4mkx+2(m2-2)=0,
∴x1+x2=-$\frac{4km}{1+2{k}^{2}}$,x1x2=$\frac{2{m}^{2}-4}{1+2{k}^{2}}$.
y1y2=(kx1+m)(kx2+m)=k2x1x2+mk(x1+x2)+m2=$\frac{{m}^{2}-4{k}^{2}}{1+2{k}^{2}}$,
由PA⊥PB,得(x1-2)(x2-2)+y1y2=0,代入得4k2+8mkx+3m2=0
∴m=-2k(舍去),m=-$\frac{2}{3}$k,
∴直线AB的方程为y=k(x-$\frac{2}{3}$),所以过定点($\frac{2}{3}$,0).
点评 本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=-x2 | B. | f(x)=$\frac{1}{{x}^{2}}$ | C. | f(x)=$\frac{1}{{x}^{3}}$ | D. | f(x)=x3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1对 | B. | 2对 | C. | 3对 | D. | 4对 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com