精英家教网 > 高中数学 > 题目详情
17.给出如下四对事件:其中属于互斥事件的有(  )
①某人射击一次,“射中7环”与“射中8环”;
②甲、乙两人各射击一次,“甲射中7环”与“乙射中8环”;
③甲、乙两人各射击一次,“两人均射中目标”与“两人均没有射中目标”;
④甲、乙两人各射击一次,“至少有一人射中目标”与“至多有一人射中目标”.
A.1对B.2对C.3对D.4对

分析 由已知条件,直接利用互斥事件的定义求解.

解答 解:在①中,某人射击一次,“射中7环”与“射中8环”不能同时发生,是互斥事件;
在②中,甲、乙两人各射击一次,“甲射中7环”与“乙射中8环”能同时发生,不是互斥事件;
在③中,甲、乙两人各射击一次,“两人均射中目标”与“两人均没有射中目标”不能同时发生,是互斥事件;
在④中,甲、乙两人各射击一次,“至少有一人射中目标”与“至多有一人射中目标”能同时发生,不是互斥事件.
故选:B.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件的定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知点F是抛物线C:y2=x的焦点,点S是抛物线C上在第一象限内的一点,且|SF|=$\frac{5}{4}$.以S为圆心的动圆与x轴分别交于两点A、B,延长SA,SB分别交抛物线C于M,N两点.
(1)当|AB|=2时,求圆S的方程;
(2)证明直线MN的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(1,$\frac{\sqrt{6}}{2}$),且离心率等于$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(2,0)作直线PA,PB交椭圆于A,B两点,且满足PA⊥PB,试判断直线AB是否过定点,若过定点求出点坐标,若不过定点请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,A,B是⊙O上的两点,P为⊙O外一点,连结PA,PB分别交⊙O于点C,D,且AB=AD,连结BC并延长至E,使∠PEB=∠PAB.
(Ⅰ) 求证:PE=PD;
(Ⅱ) 若AB=EP=1,且∠BAD=120°,求AP.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在正三棱锥P-ABC中,M是PC的中点,且AM⊥PB,AB=2$\sqrt{2}$,则正三棱锥P-ABC的外接球的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足x2+y2=4,则4(x-$\frac{1}{2}$)2+(y-1)2+4xy的取值范围是[1,22+4$\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆O:ρ=cosθ+sinθ和直线l:ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
(1)求圆O和直线l的直角坐标方程;
(2)求直线l与圆O公共点的一个极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx-x.
(I)判断函数f(x)的单调性;
(II)函数$g(x)=f(x)+x+\frac{1}{2x}-m$有两个零点x1,x2,且x1<x2.求证:x1+x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{3}$,且图象上相邻两个最低点的距离为π.
(1)函数f(x)的解析式;
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位,再将所得图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[-π,π]上的值域;
(3)求(2)中g(x)在[$\frac{π}{3}$,$\frac{10π}{3}$]上的单调递增区间.

查看答案和解析>>

同步练习册答案