精英家教网 > 高中数学 > 题目详情
已知双曲线的中心在原点,焦点在坐标轴上,上的点,且的一条渐近线,则的方程为(   )
A.B.
C.D.
A

试题分析:①当焦点在轴上,设方程为
由条件有,解得,不符合题意,所以焦点不可能在轴上.
②①当焦点在轴上,设方程为
由条件有,解得,其方程为.
故所求满足条件的方程为,选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设双曲线的半焦距为,直线两点,若原点的距离为,则双曲线的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是双曲线的左焦点,定点,点是双曲线右支上的动点,则的最小值为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的左焦点为F,点P为左支下半支上任意一点(异于顶点),则直线PF的斜率的变化范围是 (   )
A.(-∞,0) B.(1,+∞)
C.(-∞,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知中心在坐标原点的双曲线C的焦距为6,离心率等于3,则双曲线C的标准方程为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线的左、右两支分别交于A,B两点.若ABF2为等边三角形,则双曲线的离心率为(     )
A.B.2C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B,C.若,则双曲线的离心率是
A、        B、            C、        D、

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的离心率为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,已知y=x是双曲线=1(a>0,b>0)的一条渐近线方程,则此双曲线的离心率为       

查看答案和解析>>

同步练习册答案