3£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ¶ÌÖ᳤µÈÓÚ2$\sqrt{3}$£¬×󽹵㽫³¤Öá·ÖΪ³¤¶ÈÖ®±ÈΪ1£º3µÄÁ½¶Î£®
£¨I£©ÇóÍÖÔ²CµÄ·½³Ì£»
 £¨¢ò£©ÈôPÊÇÍÖÔ²CÉϵÚÒ»ÏóÏÞÄÚµÄÒ»µã£¬µãA£¬B·Ö±ðΪÍÖÔ²µÄ×ó¡¢ÓÒ¶¥µã£¬Ö±ÏßPAÓëyÖá½»ÓÚµãM£¬Ö±ÏßPBÓëyÖá½»ÓÚµãN£¬Èô¡÷M0AÓë¡÷N0BµÄÃæ»ýÖ®ºÍµÈÓÚ6£¬ÇóPµã×ø±ê£®

·ÖÎö £¨I£©ÓÉ×󽹵㽫³¤Öá·ÖΪ³¤¶ÈÖ®±ÈΪ1£º3µÄÁ½¶Î£¬¿ÉµÃ$\frac{a-c}{a+c}$=$\frac{1}{3}$£¬»¯Îªa=2c£®ÁªÁ¢$\left\{\begin{array}{l}{a=2c}\\{2b=2\sqrt{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨II£©ÉèP£¨x0£¬y0£©£¨x0£¬y0£¾0£©£®ÔòÖ±ÏßPAµÄ·½³ÌΪ£º$y=\frac{{y}_{0}}{{x}_{0}+2}£¨x+2£©$£¬¿ÉµÃM$£¨0£¬\frac{2{y}_{0}}{{x}_{0}+2}£©$£®Í¬Àí¿ÉµÃ£ºN$£¨0£¬\frac{2{y}_{0}}{2-{x}_{0}}£©$£®ÓÚÊÇS¡÷MOA=$\frac{2{y}_{0}}{{x}_{0}+2}$£¬S¡÷NOB=$\frac{2{y}_{0}}{2-{x}_{0}}$£®¸ù¾Ý¡÷M0AÓë¡÷N0BµÄÃæ»ýÖ®ºÍµÈÓÚ6£¬¿ÉµÃ$\frac{2{y}_{0}}{{x}_{0}+2}$+$\frac{2{y}_{0}}{2-{x}_{0}}$=6£®Óë$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{3}=1$£®Ôò$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{3}=1$ÁªÁ¢½â³ö¼´¿É£®

½â´ð ½â£º£¨I£©¡ß×󽹵㽫³¤Öá·ÖΪ³¤¶ÈÖ®±ÈΪ1£º3µÄÁ½¶Î£¬¡à$\frac{a-c}{a+c}$=$\frac{1}{3}$£¬»¯Îªa=2c£®
ÁªÁ¢$\left\{\begin{array}{l}{a=2c}\\{2b=2\sqrt{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃb=$\sqrt{3}$£¬c=1£¬a=2£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£®
£¨II£©ÉèP£¨x0£¬y0£©£¨x0£¬y0£¾0£©£¬$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{3}=1$£®
ÔòÖ±ÏßPAµÄ·½³ÌΪ£º$y=\frac{{y}_{0}}{{x}_{0}+2}£¨x+2£©$£¬¿ÉµÃM$£¨0£¬\frac{2{y}_{0}}{{x}_{0}+2}£©$£®
Ö±ÏßPBµÄ·½³ÌΪ£º$y=\frac{{y}_{0}}{{x}_{0}-2}£¨x-2£©$£¬¿ÉµÃN$£¨0£¬\frac{2{y}_{0}}{2-{x}_{0}}£©$£®
¡àS¡÷MOA=$\frac{1}{2}|OA||OM|$=$\frac{2{y}_{0}}{{x}_{0}+2}$£¬S¡÷NOB=$\frac{1}{2}|OB||ON|$=$\frac{2{y}_{0}}{2-{x}_{0}}$£®
¡ß¡÷M0AÓë¡÷N0BµÄÃæ»ýÖ®ºÍµÈÓÚ6£¬
¡à$\frac{2{y}_{0}}{{x}_{0}+2}$+$\frac{2{y}_{0}}{2-{x}_{0}}$=6£®
»¯Îª£º$4{y}_{0}=12-3{x}_{0}^{2}$£¬
ÁªÁ¢$\left\{\begin{array}{l}{4{y}_{0}+3{x}_{0}^{2}=12}\\{3{x}_{0}^{2}+4{y}_{0}^{2}=12}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{x}_{0}=\frac{2\sqrt{6}}{3}}\\{{y}_{0}=1}\end{array}\right.$£¬
¡àP$£¨\frac{2\sqrt{6}}{3}£¬1£©$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¡¢Öеã×ø±ê¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Éè0£¼a£¼1£¬º¯Êýy=loga£¨ax-1£©£¬Ôòʹf£¨x£©£¼0µÄȡֵ·¶Î§ÊÇx£¼loga2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èô²»µÈʽ|ax+b|£¼cµÄ½â¼¯Îª£¨-2£¬1£©£¬Çóa£ºb£ºcµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=x3+ax+$\frac{1}{4}$£¬g£¨x£©=-lnx£®
£¨1£©µ±aΪºÎֵʱ£¬xÖáΪÇúÏßy=f£¨x£©µÄÇÐÏߣ®
£¨2£©ÉèF£¨x£©=f£¨x£©-g£¨x£©ÔÚ[1£¬+¡Þ£©µ¥µ÷µÝÔö£¬ÇóaµÄȡֵ·¶Î§£®
£¨3£©ÓÃmin{m£¬n}±íʾm£¬nÖеÄ×îСֵ£¬É躯Êýh£¨x£©=min{f£¨x£©£¬g£¨x£©}£¨x£¾0£©£¬ÌÖÂÛh£¨x£©ÁãµãµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÇóÖ¤£º
£¨1£©|x-a|+|x-b|¡Ý|a-b|£»
£¨2£©|x-a|-|x-b|¡Ü|a-b|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Çóº¯Êýf£¨x£©=x3-x-1ÔÚ£¨1£¬1.5£©ÄÚµÄÁãµã£¨¾«È·¶ÈΪ0.1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®£¨1£©ÒÑÖªx£¬y¡ÊR+£¬Çó$\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}$µÄ×î´óÖµ£»
£¨2£©ÇóÂú×ã2$\sqrt{a}$+$\sqrt{b}$¡Ýk$\sqrt{4a+b}$¶Ôa£¬b¡ÊR+ÓнâµÄʵÊýkµÄ×î´óÖµ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒÖÜÆÚT=2£¬µ±x¡Ê£¨-1£¬0£©Ê±£¬f£¨x£©=x3+$\frac{3}{2}$x2£¬ÊÔÅж¨µ±x¡Ê£¨2k£¬2k+1£©£¨k¡ÊZ£©Ê±£¬f£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®º¯Êýf£¨x£©=${2}^{\sqrt{{x}^{2}-x-6}}$µÄµ¥µ÷¼õÇø¼äÊÇ£¨-¡Þ£¬-2]£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸