精英家教网 > 高中数学 > 题目详情

已知a,b,c分别为ABC的三个内角A,B,C的对边,=(sinA,1),=(cosA,),且//

(I)求角A的大小;

(II)若a=2,b=2,求ABC的面积.

 

【答案】

(I).(II)ABC的面积为.

【解析】

试题分析:(I)根据//,可得到注意到,得到.

(II)首先由正弦定理可得:通过讨论,得到,从而.

根据,分别计算

进一步确定ABC的面积.

试题解析:(I)因为//,所以

因为,所以.

(II)由正弦定理可得:因为,所以.

时,

所以

时,

所以.

ABC的面积为.

考点:平面向量的 坐标运算,两角和差的三角函数,正弦定理的应用,三角形面积公式.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC的三个内角A,B,C的对边,且(b+a+c)(b-a-c)+2
3
absinC=0

(1)求B
(2)若b=2,△ABC的面积为
3
,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+
3
asinC-b-c=0

(1)求A;
(2)若a=2,△ABC的面积为
3
,证明△ABC是正三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)已知a,b,c分别为△ABC三个内角A,B,C的对边,2bcosc=2a-c
(I)求 B;
(II)若△ABC的面积为
3
,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)已知a,b,c分别为△ABC三个内角A、B、C所对的边长,a,b,c成等比数列.
(1)求B的取值范围;
(2)若x=B,关于x的不等式cos2x-4sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)+m>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+
3
asinC-b-c=0

(1)求A;
(2)若△ABC的面积S=5
3
,b=5,求sinBsinC的值.

查看答案和解析>>

同步练习册答案