分析 (1)设过原点O的圆C的切线方程为y=kx,与圆的方程联立,利用△=0,即可求过点O的且与圆C相切的直线l的方程;
(2)若P是圆C上的一动点,M是OP的中点,利用圆的参数方程,即可求点M的轨迹方程.
解答 解:(1)设过原点O的圆C的切线方程为y=kx.
y=kx代入x2+y2-6y+8=0,可得(k2+1)x2-6kx+8=0
∵直线与圆相切,方程有两相等的实数根,
∴(-6k)2-4(k2+1)×8=0
整理,得k2=8,∴k=±2$\sqrt{2}$,
∴过原点O的圆C的切线方程为y=$±2\sqrt{2}$x;
(2)x2+y2-6y+8=0,即x2+(y-3)2=1,
设点P坐标(cosα,3+sinα),点M坐标(x,y),则cosα=2x,y,sinα=2y-3.
∵cos2α+sin2α=1,∴(2x)2+(2y-3)2=1,这就是所求的点M的轨迹方程,是一个圆.
点评 本题考查直线与圆的位置关系,考查轨迹方程,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 初一年级 | 初二年级 | 初三年级 | |
| 女生 | 373 | x | y |
| 男生 | 377 | 370 | z |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com