精英家教网 > 高中数学 > 题目详情
11.数列{an}的前n项和为Sn,Sn=3n2+2n,数列{bn}为等差数列,an=bn+bn+1
(1)求{bn}的通项公式.
(2)cn=$\frac{{{{({a_n}+1)}^{n+1}}}}{{{{({b_n}+2)}^n}}}$,求{cn}的前n项和.

分析 (1)由Sn=3n2+2n,可得数列{an}是等差数列,可得an=6n-1=bn+bn+1.设等差数列{bn}的公差为d,则$\left\{\begin{array}{l}{{b}_{1}+{b}_{2}=5}\\{{b}_{2}+{b}_{3}=11}\end{array}\right.$,即可得出bn
(2)cn=$\frac{{{{({a_n}+1)}^{n+1}}}}{{{{({b_n}+2)}^n}}}$=3n×2n+1,利用“错位相减法”与等比数列的求和公式即可得出.

解答 解:(1)∵Sn=3n2+2n,∴数列{an}是等差数列,首项a1=S1=5,
∵5+a2=3×22+2×2,解得a2=11,
∴公差=11-5=6,∴an=5+6(n-1)=6n-1.∴6n-1=bn+bn+1
设等差数列{bn}的公差为d,则$\left\{\begin{array}{l}{{b}_{1}+{b}_{2}=5}\\{{b}_{2}+{b}_{3}=11}\end{array}\right.$,
∴2d=11-5=6,解得d=3,∴2b1+3=5,解得b1=1.
∴bn=1+3(n-1)=3n-2.
(2)cn=$\frac{{{{({a_n}+1)}^{n+1}}}}{{{{({b_n}+2)}^n}}}$=$\frac{(6n-1+1)^{n+1}}{(3n-2+2)^{n}}$=6n×2n=3n×2n+1
∴{cn}的前n项和Tn=3(22+2×23+3×24+…+n×2n+1).
2Tn=3[23+2×24…+(n-1)×2n+1+n×2n+2],
∴-Tn=3[22+23+…+2n+1-n×2n+2]=$3×(\frac{4({2}^{n}-1)}{2-1}-n×{2}^{n+2})$,
∴Tn=(6n-6)×2n+1+12.

点评 本题考查了“错位相减法”、等差数列与等比数列的定义通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足条件$\left\{{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{y≤1}\end{array}}\right.$,则2x+y的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=2x-$\frac{1}{x}$的图象关于(  )
A.y轴对称B.直线y=-x对称C.直线y=x对称D.坐标原点对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知非零向量$\overrightarrow a\;,\;\overrightarrow b$的夹角为$\frac{π}{3}$,且$|{\overrightarrow b}$|=2,$|{\overrightarrow b-2\overrightarrow a}$|=2,则$|{\overrightarrow a}$|=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知等差数列{an}满足:a5+a6+a7=15,Sn为数列{an}的前n项和,则S11=55.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.$\left\{\begin{array}{l}{y≤1}\\{x+y≤2}\\{x+2y-2≥0}\end{array}\right.$,则z=3x+y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1,F2,离心率为$\frac{\sqrt{3}}{3}$,点M是椭圆上一点,三角形MF1F2的面积的最大值为$\sqrt{2}$
(1)求椭圆的标准方程
(2)设不经过焦点F1的直线λ:y=kx+m与椭圆交于两个不同的点A、B,焦点F2到直线l的距离为d,如果直线AF1,l,BF1的斜率依次成等差数列,求d的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.等差数列{an}中,已知a1=21,a10=3.
(1)求{an}的通项公式;
(2)求此数列前11项和S11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在某天的上午9:00~12:00时段,湛江一间商业银行随机收集了100位客户在营业厅窗口办理业务类型及用时量的信息,相关数据统计如表1与图2所示.
一次办理业务类型A型业务B型业务C型业务D型业务E型业务
平均用时量(分钟/人)56.581215
已知这100位客户中办理型和型业务的共占50%(假定一人一次只办一种业务).
(Ⅰ)确定图2中x,y的值,并求随机一位客户一次办理业务的用时量X的分布列与数学期望;
(Ⅱ)若某客户到达柜台时,前面恰有2位客户依次办理业务(第一位客户刚开始办理业务),且各客户之间办理的业务相互独立,求该客户办理业务前的等候时间不超过13分钟的概率.
(注:将频率视为概率,参考数据:5×35+6.5×15+8×23+12×17=660.5,352+152+2×35×23+2×35×15=4110,352+152+35×23=2255)

查看答案和解析>>

同步练习册答案