分析 (1)由等差数列的通项公式可知:a10=a1+9d,代入即可求得d=-2,数列{an}是以23为首项,以-2为公差的等差数列,根据等差数列通项公式即可求得{an}的通项公式;
(2)由(1)可知:a11=-2×11+23=1,由等差数列前n项和公式,S11=$\frac{11×({a}_{1}+{a}_{11})}{2}$=$\frac{11×(21+1)}{2}$=121,即可求得S11.
解答 解:(1)由等差数列{an}的公差为d,
由a10=a1+(10-1)d,即a10=a1+9d,
d=$\frac{{a}_{10}-{a}_{1}}{9}$=$\frac{3-21}{9}$=-2,
数列{an}是以21为首项,以-2为公差的等差数列,
由等差数列通项公式可知:an=a1+(n-1)d=21-2(n-1)=-2n+23,
{an}的通项公式an=-2n+23;
(2)由(1)可知:a11=-2×11+23=1
根据等差数列前n项公式可知:S11=$\frac{11×({a}_{1}+{a}_{11})}{2}$=$\frac{11×(21+1)}{2}$=121,
∴数列前11项和S11=121.
点评 本题考查等差数列通项公式及等差数列前n项和公式的应用,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 cm | B. | 2 cm | C. | $\frac{1}{2}$ cm | D. | $\frac{3}{2}$ cm |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com