精英家教网 > 高中数学 > 题目详情
8.将二次函数y=x2+1的图象向左平移2个单位,再向下平移3个单位,所得二次函数的解析式是y=x2+4x+2.

分析 利用函数的图象变换,写出函数的解析式即可.

解答 解:将二次函数y=x2+1的图象向左平移2个单位,再向下平移3个单位,所得二次函数的解析式是:y=(x+2)2+1-3=x2+4x+2.
故答案为:y=x2+4x+2.

点评 本题考查函数的图象的变换,函数的解析式的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若0<m<n,则下列结论正确的是(  )
A.2m>2nB.0.5m<0.5n
C.${log_2}^m>{log_2}^n$D.${log_{0.5}}^m>{log_{0.5}}^n$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知非零向量$\overrightarrow a\;,\;\overrightarrow b$的夹角为$\frac{π}{3}$,且$|{\overrightarrow b}$|=2,$|{\overrightarrow b-2\overrightarrow a}$|=2,则$|{\overrightarrow a}$|=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.$\left\{\begin{array}{l}{y≤1}\\{x+y≤2}\\{x+2y-2≥0}\end{array}\right.$,则z=3x+y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1,F2,离心率为$\frac{\sqrt{3}}{3}$,点M是椭圆上一点,三角形MF1F2的面积的最大值为$\sqrt{2}$
(1)求椭圆的标准方程
(2)设不经过焦点F1的直线λ:y=kx+m与椭圆交于两个不同的点A、B,焦点F2到直线l的距离为d,如果直线AF1,l,BF1的斜率依次成等差数列,求d的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的前n项和为Sn满足Sn=$\frac{2}{3}$an+$\frac{1}{3}$,则{an}的通项公式${a}_{n}=(-2)^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.等差数列{an}中,已知a1=21,a10=3.
(1)求{an}的通项公式;
(2)求此数列前11项和S11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若已知两圆方程为x2+y2-2x+10y+1=0,x2+y2-2x+2y+1=0,则两圆的位置关系是(  )
A.内含B.内切C.相交D.外切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式ax2+bx+c>0的解集是(1,2),则不等式cx2+bx+a>0的解集是{x|$\frac{1}{2}$<x<1}.

查看答案和解析>>

同步练习册答案