精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,四棱锥PABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,平面PAD⊥平面ABCDEF分别为PCBD的中点.
(1)证明:EF∥平面PAD
(2)证明:平面PDC⊥平面PAD.
证明(1)连接AC
ABCD为矩形,F为BD的中点
∴F为AC的中点
又∵EPC的中点,
∴EF∥AP

EF∥平面PAD.
(2)∵ABCD为矩形

又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本题满分12分)如图,在梯形中,,四边形为矩形,平面平面.
(I)求证:平面
(II)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,已知正三棱柱的各棱长都是4, 的中点,动点在侧棱上,且不与点重合.
(I)当时,求证:
(II)设二面角的大小为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,为圆柱的母线,是底面圆的直径,分别是的中点,DE⊥面CBB1.
(Ⅰ)证明:DE //面ABC
(Ⅱ)求四棱锥与圆柱的体积比;
(Ⅲ)若,求与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱锥ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,O为AC中点。
(1)求直线A1C与平面A1AB所成角的正弦值;
(2)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S1、S2、S3,则(   )
A.S1<S2<S3B.S3<S2<S1C.S2<S1<S3D.S1<S3<S2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数是以为周期的奇函数,,且,则_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.如图,由编号,…,,…()的圆柱自下而上组成.其中每一个圆柱的高与其底面圆的直径相等,且对于任意两个相邻圆柱,上面圆柱的高是下面圆柱的高的一半.若编号1的圆柱的高为,则所有圆柱的体积的和为_______________(结果保留).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线,给出下列命题:
①若,则;     ②若
③若;      ④若
⑤若
其中正确命题的序号是_______________(把所有正确命题的序号都填上).

查看答案和解析>>

同步练习册答案