精英家教网 > 高中数学 > 题目详情

【题目】若定义在R上的函数满足:对于任意实数xy,总有恒成立,我们称类余弦型函数.

已知类余弦型函数,且,求的值;

的条件下,定义数列23的值.

类余弦型函数,且对于任意非零实数t,总有,证明:函数为偶函数,设有理数满足,判断的大小关系,并证明你的结论.

【答案】(1)(2)(3)证明见解析,,证明见解析

【解析】

是抽象函数基础题,令,求得;令,求得;

对于此数列,需要求其通项,而求通项又需要递推公式,令,利用题中关系式推导出递推公式,求通项然后利用对数的运算法则求解答案;

属于难题,因为的铺垫,代入特定的数即令,y为任意实数即可证明偶函数,证明的大小关系需要定义新的数列,又因为题目中的有理数条件,要充分利用分数的特点.

解:,则,所以

,则,所以

,其中n是大于1的整数,则,所以,即

又因为,所以数列是首项为3,公比为2的等比数列,所以,则

所以原式

(3)证明:由题意函数定义域为R关于原点对称,

,y为任意实数,则,即,所以是偶函数.

N,分母的最小公倍数,并且,,都是自然数,并且

令数列满足1下证:数列单调递增.

,所以

n是正整数,即

,则,即

所以

综上,数列单调递增,所以,又因为是偶函数,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】年底,我国发明专利申请量已经连续年位居世界首位,下表是我国年至年发明专利申请量以及相关数据.

注:年份代码分别表示.

1)可以看出申请量每年都在增加,请问这几年中哪一年的增长率达到最高,最高是多少?

2)建立关于的回归直线方程(精确到),并预测我国发明专利申请量突破万件的年份.

参考公式:回归直线的斜率和截距的最小二乘法估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为R的水车,一个水斗从点A(3,-3)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒.经过t秒后,水斗旋转到P点,设P的坐标为(x,y),其纵坐标满足y=f(t)=Rsin(ωt+φ)(t≥0,ω>0,|φ|<).则下列叙述错误的是(  )

A.R=6,ω=,φ=-

B.当t∈[35,55]时,点P到x轴的距离的最大值为6

C.当t∈[10,25]时,函数y=f(t)单调递减

D.当t=20时,|PA|=6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数=[]

若曲线y= fx在点(1,处的切线与轴平行a

x=2处取得极小值a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,且经过点.

(1)求椭圆的方程;

(2)过点作直线与椭圆交于不同的两点,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊数学家阿波罗尼斯在其巨著《圆锥曲线论》中提出在同一平面上给出三点,若其中一点到另外两点的距离之比是一个大于零且不等于1的常数,则该点轨迹是一个圆现在,某电信公司要在甲、乙、丙三地搭建三座5G信号塔来构建一个三角形信号覆盖区域,以实现5G商用,已知甲、乙两地相距4公里,丙、甲两地距离是丙、乙两地距离的倍,则这个三角形信号覆盖区域的最大面积(单位:平方公里)是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,点在椭圆上,为原点.

,求椭圆的离心率;

若椭圆的右顶点为,短轴长为2,且满足为椭圆的离心率).

求椭圆的方程;

设直线与椭圆相交于两点,若的面积为1,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=ax2+12axlnxaR).

1)讨论fx)的单调性;

2)当a0时,证明fxlnae2)﹣2ae为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右两个顶点分别为,曲线是以两点为顶点,焦距为的双曲线,设点在第一象限且在曲线上,直线与椭圆相交于另一点.

1)求曲线的方程;

2)设两点的横坐标分别为,求证为一定值;

3)设△与△(其中为坐标原点)的面积分别为,且,求的取值范围.

查看答案和解析>>

同步练习册答案