精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的左、右焦点分别为,点在椭圆上,为原点.

,求椭圆的离心率;

若椭圆的右顶点为,短轴长为2,且满足为椭圆的离心率).

求椭圆的方程;

设直线与椭圆相交于两点,若的面积为1,求实数的值.

【答案】(1)(2)①

【解析】

1)由题意得,利用勾股定理得,再利用椭圆的定义得到的关系,从而求得离心率;

2)①由,得,求出后,即可得到椭圆的方程;

②设点,将直线方程代入椭圆方程,利用韦达定理和弦长公式求得关于的解析式,再由点到直线的距离公式,得到面积,从而求得的值.

1)连接.因为

所以是等边三角形,所以.

,所以,所以.

于是,有

所以,即所求椭圆的离心率为.

2)①由,得

整理,得.

又因为,所以.

故所求椭圆的方程为.

②依题意,设点.

联立方程组

消去,并整理得.

,(*

所以.

又点到直线的距离为

所以.

因为,所以,解得.

经验证满足(*)式,

故所求实数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCDPDAD2.

(1)求该四棱锥P-ABCD的表面积和体积;

(2)求该四棱锥P-ABCD内切球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数的图象,且图象的最高点为;赛道的后一部分为折线段MNP.为保证参赛运动员的安全,限定

1)求点M的坐标;

2)应如何设计,才能使折线段赛道MNP最长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的函数满足:对于任意实数xy,总有恒成立,我们称类余弦型函数.

已知类余弦型函数,且,求的值;

的条件下,定义数列23的值.

类余弦型函数,且对于任意非零实数t,总有,证明:函数为偶函数,设有理数满足,判断的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】互联网+”智慧城市的重要内容,A市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费WiFi为了解免费WiFiA市的使用情况,调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到如下列联表(单位:人):

经常使用免费WiFi

尔或不用免费WiFi

合计

45岁及以下

70

30

100

45岁以上

60

40

100

合计

130

70

200

1)根据以上数据,判断是否有90%的把握认为A市使用免费WiFi的情况与年龄有关;

2)现从所抽取的45岁以上的市民中按是否经常使用WiFi进行分层抽样再抽取5.

i)分别求这5人中经常使用,偶尔或不用免费WFi的人数;

ii)从这5人中,再随机选出2人各赠送1件礼品,求选出的2人中至少有1人经常使用免费WiFi的概率.

附:,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆以原点为中心,左焦点的坐标是,长轴长是短轴长的倍,直线与椭圆交于点,且都在轴上方,满足

1)求椭圆的标准方程;

2)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=exgx)=42,若在[0+∞)上存在x1x2,使得fx1)=gx2),则x2x1的最小值是(   )

A.1+ln2B.1ln2C.D.e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中错误的是(

A.命题,则的逆否命题是,则

B.的充分条件

C.命题,则方程有实根的逆命题是真命题

D.命题,则的否命题是,则

查看答案和解析>>

同步练习册答案