精英家教网 > 高中数学 > 题目详情
用反证法证明命题“三角形的内角中至多有一个钝角”时,假设正确的是( )
A.三个内角中至少有一个钝角
B.三个内角中至少有两个钝角
C.三个内角都不是钝角
D.三个内角都不是钝角或至少有两个钝角
B

试题分析:反证法的第一步为否定结论,而原题中结论为三角形的内角中至多有一个钝角,即三角形的内角中有一个钝角或没有钝角,显然,其否定为三角形的内角中至少有两个钝角.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(1)用反证法证明:在一个三角形中,至少有一个内角大于或等于
(2)已知,试用分析法证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,试证明至少有一个不小于1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

都是正实数,且.求证:中至少有一个成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

类比平面内直角三角形的勾股定理,在空间四面体P-ABC中,记底面△ABC的面积为S0,三个侧面的面积分别为S1,S2,S3,若PA,PB,PC两两垂直,则有结论______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在Rt△ABC中,CA⊥CB,斜边AB上的高为h1,则
1
h21
=
1
CA2
+
1
CB2
;类比此性质,如图,在四面体P-ABC中,若PA,PB,PC两两垂直,底面ABC上的高为h,则得到的正确结论为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

因为对数函数y=logax是减函数(大前提),而y=log2x是对数函数(小前提),所以y=log2x是减函数(结论)”.上面推理是(  )
A.大前提错,导致结论错
B.小前提错,导致结论错
C.推理形式错,导致结论错
D.大前提和小前提都错,导致结论错

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

凸函数的性质定理为:如果函数f(x)在区间D上是凸函数,则对于区间D内的任意x1,x2,…,xn,有≤f(),已知函数y=sinx在区间(0,π)上是凸函数,则在△ABC中,sinA+sinB+sinC的最大值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中至少有一个小于2。

查看答案和解析>>

同步练习册答案