精英家教网 > 高中数学 > 题目详情
已知,试证明至少有一个不小于1.
见解析

试题分析:先假设结论的反面成立,即假设均小于1,即,则有,然后通过不等式推出矛盾即可.
假设均小于1,即,则有
,矛盾.所以原命题成立
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(1)用综合法证明:()
(2)用反证法证明:若均为实数,且求证:中至少有一个大于0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中正确的是(  )
A.合情推理就是正确的推理
B.合情推理就是归纳推理
C.归纳推理是从一般到特殊的推理过程
D.类比推理是从特殊到特殊的推理过程

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(n)=log(n+1)(n+2)(n∈N*),若存在正整数k满足:f(1)•f(2)•f(3)•…•f(n)=k,那么我们把k叫做关于n的“对整数”,则当n∈[1,10]时,“对整数”共有(  )
A.1个B.2个C.4个D.8个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

因为a,b∈R+,a+b≥2
ab
,…大前提
x+
1
x
≥2
x•
1
x
,…小前提
所以x+
1
x
≥2,…结论
以上推理过程中的错误为(  )
A.小前提B.大前提C.结论D.无错误

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明命题“三角形的内角中至多有一个钝角”时,假设正确的是( )
A.三个内角中至少有一个钝角
B.三个内角中至少有两个钝角
C.三个内角都不是钝角
D.三个内角都不是钝角或至少有两个钝角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明命题“设为实数,则方程至少有一个实根”时,要做的假设是(   )
A.方程没有实根
B.方程至多有一个实根
C.方程至多有两个实根
D.方程恰好有两个实根

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

请阅读下列材料:若两个正实数a1,a2满足a12+a22=1,那么a1+a2.
证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2.
根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用分析法证明:

查看答案和解析>>

同步练习册答案