精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=|x-3|-|x+a|,其中a∈R.
(Ⅰ)当a=2时,解不等式f(x)<1;
(Ⅱ)若对于任意实数x,恒有f(x)≤2a成立,求a的取值范围.

分析 (Ⅰ)通过讨论x的范围,解出各个阶段上的x的范围,取并集即可;
(Ⅱ)求出f(x)的最大值,问题等价于|a+3|≤2a,解出即可.

解答 解:(Ⅰ)a=2时,f(x)<1就是|x-3|-|x+2|<1.
当x<-2时,3-x+x+2<1,得5<1,不成立;
当-2≤x<3时,3-x-x-2<1,得x>0,所以0<x<3;
当x≥3时,x-3-x-2<1,即-5<1,恒成立,所以x≥3.
综上可知,不等式f(x)<1的解集是(0,+∞).…(5分)
(Ⅱ) 因为f(x)=|x-3|-|x+a|≤|(x-3)-(x+a)|=|a+3|,
所以f(x)的最大值为|a+3|.
对于任意实数x,恒有f(x)≤2a成立等价于|a+3|≤2a.
当a≥-3时,a+3≤2a,得a≥3;
当a<-3时,-a-3≤2a,a≥-1,不成立.
综上,所求a的取值范围是[3,+∞)…(10分)

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4},则(∁UA)∪B=(  )
A.{4}B.{2,3,4}C.{3,4,5}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在边长分别为f(x)与g(x)和2π的矩形内有由函数y=sinx的图象和x轴围成的区域(阴影部分),李明同学用随机模拟的方法估算该区域的面积.若在矩形内每次随机产生9000个点,并记录落在该区域内的点的个数.经过多次试验,计算出落在该区域内点的个数平均值为3000个,若π的近似值为3,则该区域的面积约为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将向量$\overrightarrow{a_1}$=(x1,y1),$\overrightarrow{a_2}$=(x2,y2),…$\overrightarrow{a_n}$=(xn,yn)组成的系列称为向量列{$\overrightarrow{a_n}$},并定义向量列{$\overrightarrow{a_n}$}的前n项和$\overrightarrow{S_n}=\overrightarrow{a_1}+\overrightarrow{a_2}+…+\overrightarrow{a_n}$.如果一个向量列从第二项起,每一项与前一项的差都等于同一个向量,那么称这样的向量列为等差向量列.若向量列{$\overrightarrow{a_n}$}是等差向量列,那么下述四个向量中,与$\overrightarrow{{S_{21}}}$一定平行的向量是(  )
A.$\overrightarrow{{a_{10}}}$B.$\overrightarrow{{a_{11}}}$C.$\overrightarrow{{a_{20}}}$D.$\overrightarrow{{a_{21}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={0,a-2,3},若{-2,0}⊆A,则实数a的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=x3B.y=e-xC.y=-x2+1D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的各项均不为零,其前n项和为Sn,Sn=2an-2(n∈N*),设${b_n}=\frac{3^n}{{{2^n}{S_n}}}$,数列{bn}的前n项和为Tn
(Ⅰ)比较bn+1与$\frac{3}{4}{b_n}$的大小(n∈N*);
(Ⅱ)证明:(2n-1)bn≤T2n-1<3,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.对于数列{an}与{bn},若对数列{cn}的每一项cn,均有ck=ak或ck=bk,则称数列{cn}是{an}与{bn}的一个“并数列”.
(1)设数列{an}与{bn}的前三项分别为a1=1,a2=3,a3=5,b1=1,b2=2,b3=3,若{cn}是{an}与{bn}一个“并数列”求所有可能的有序数组(c1,c2,c3);
(2)已知数列{an},{cn}均为等差数列,{an}的公差为1,首项为正整数t;{cn}的前10项和为-30,前20项的和为-260,若存在唯一的数列{bn},使得{cn}是{an}与{bn}的一个“并数列”,求t的值所构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=$\sqrt{x}$+log2(x+1),则f(-1)=(  )
A.1B.-1C.-2D.2

查看答案和解析>>

同步练习册答案