【题目】从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示,在这些用户中,用电量落在区间[150,250)内的户数为 .
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线C1的参数方程为: (α为参数),以原点为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C2的极坐标方程为:ρ=cosθ. (Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)若P,Q分别是曲线C1和C2上的任意一点,求|PQ|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(2sinx,﹣cosx)、B( cosx,2cosx),记f(x)= .
(1)若x0是函数y=f(x)﹣1的零点,求tanx0的值;
(2)求f(x)在区间[ , ]上的最值及对应的x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次耐力和体能测试之后,某校对其甲、乙、丙、丁四位学生的耐力成绩()和体能成绩()进行回归分析,求得回归直线方程为.由于某种原因,成绩表(如下表所示)中缺失了乙的耐力和体能成绩.
甲 | 乙 | 丙 | 丁 | |
耐力成绩(X) | 7.5 | m | 8 | 8.5 |
体能成绩(Y) | 8 | n | 8.5 | 9.5 |
综合素质 () | 15.5 | 16 | 16.5 | 18 |
(Ⅰ)请设法还原乙的耐力成绩和体能成绩;
(Ⅱ)在区域性校际学生身体综合素质比赛中,由甲、乙、丙、丁四位学生组成学校代表队参赛.共举行3场比赛,每场比赛均由赛事主办方从学校代表中随机抽两人参赛,每场比赛所抽的选手中,只要有一名选手的综合素质分高于16分,就能为所在学校赢得一枚荣誉奖章.若记比赛中赢得荣誉奖章的枚数为,试根据上表所提供数据,预测该校所获奖章数的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cosωx(sinωx+ cosωx)(ω>0),如果存在实数x0 , 使得对任意的实数x,都有f(x0)≤f(x)≤f(x0+2016π)成立,则ω的最小值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= x2+ax﹣lnx(a∈R).
(1)当a=1时,求函数f(x)的极值;
(2)当a>1时,讨论函数f(x)的单调性;
(3)若对任意a∈(3,4)及任意x1 , x2∈[1,2],恒有 m+ln2>|f(x1)﹣f(x2)|成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某单位有50名职工,现要从中抽取 10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.
(Ⅰ)若第5组抽出的号码为22,写出所有被抽出职工的号码;
(Ⅱ)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的平均数、中位数和方差;
(Ⅲ)在(Ⅱ)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(73公斤)的职工,求体重为81公斤的职工被抽取到的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为f1(x)=2x﹣1,f2(x)=x3 , f3(x)=x,f4(x)=log2(x+1),有以下结论:
①当x>1时,甲走在最前面;
②当x>1时,乙走在最前面;
③当0<x<1时,丁走在最前面,当x>1时,丁走在最前面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲.
其中,正确结论的序号为(把正确结论的序号都填上,多填或少填均不得分)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆C1: +y2=1,双曲线C2: =1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为( )
A.
B.5
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com