精英家教网 > 高中数学 > 题目详情
12.已知向量$\overrightarrow{a}$=(m,-1),$\overrightarrow{b}$=(sinx,cosx),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$且满足f($\frac{π}{2}$)=1.
(1)求函数y=f(x)的最大值及其对应的x值;
(2)若f(α)=$\frac{1}{5}$,求$\frac{sin2α-2si{n}^{2}α}{1-tanα}$的值.

分析 (1)由条件利用两个向量的数量积公式,求得m=1,再根据正弦函数的值域求得函数的最大值以及其对应的x值.
(2)由条件利用同角三角函数的基本关系求得sin2α=$\frac{24}{25}$.再利用同角三角函数的基本关系化简要求的式子为sin2α,可得结果.

解答 解:(1)∵f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=msinx-cosx,且满足f($\frac{π}{2}$)=1,∴$msin\frac{π}{2}-cos\frac{π}{2}=1$,即m=1,
则f(x)=sinx-cosx=$\sqrt{2}$sin(x-$\frac{π}{4}$),
当x-$\frac{π}{4}$=2kπ+$\frac{π}{2}$,即x=2kπ+$\frac{3π}{4}$,k∈Z时,f(x)max=$\sqrt{2}$.
(2)f(α)=$\frac{1}{5}$,即sinα-cosα=$\frac{1}{5}$,两边平方得:1-sin2α=$\frac{1}{25}$,所以sin2α=$\frac{24}{25}$.
故 $\frac{sin2α-2si{n}^{2}α}{1-tanα}$=$\frac{2sinαcosα-{2sin}^{2}α}{\frac{cosα-sinα}{cosα}}$=2sinαcosα=sin2α=$\frac{24}{25}$.

点评 本题主要考查两个向量的数量积公式,正弦函数的值域,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.若关于x的不等式a<丨x-4丨-丨x-3丨存在实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解不等式:$\frac{x-1}{{x}^{2}-7x-18}$≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=|x+2|+a|x-3|
(Ⅰ)当a=1时,求函数y=f(x)的最小值,并指出取得最小值时x的值;
(Ⅱ)若a≥1,讨论关于x的方程f(x)=a的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知$\frac{a+b}{c}$=$\frac{b+c}{a}$=$\frac{c+a}{b}$=k,求k的值(提示:要考虑a+b+c=0)的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在同一坐标系中,将曲线y=3sin2x变为曲线y′=sinx′的伸缩变换是(  )
A.$\left\{\begin{array}{l}{x=2x′}\\{y=\frac{1}{3}y′}\end{array}\right.$B.$\left\{\begin{array}{l}{x′=2x}\\{y′=\frac{1}{3}y}\end{array}\right.$C.$\left\{\begin{array}{l}{x=2x′}\\{y=3y′}\end{array}\right.$D.$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在极坐标系中,直线l的方程为$\sqrt{3}$ρcosθ+ρsinθ=1,则点$({2,\frac{π}{6}})$到直线l的距离为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,正方形ACDE与等腰直角三角形ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G分别是线段AE,BC的中点,则AD与GF所成的角的余弦值为$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,四面体D-ABC的体积为$\frac{1}{4}$,且满足∠ACB=60°,BC=1,AD+$\frac{AC}{\sqrt{3}}$=2,则四面体D-ABC中最长棱的长度为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.3

查看答案和解析>>

同步练习册答案