精英家教网 > 高中数学 > 题目详情
3.解不等式:$\frac{x-1}{{x}^{2}-7x-18}$≤0.

分析 不等式即即 $\frac{x-1}{(x-9)(x+2)}$≤0,用穿根法求得它的解集.

解答 解:$\frac{x-1}{{x}^{2}-7x-18}$≤0,即 $\frac{x-1}{(x-9)(x+2)}$≤0,用穿根法求得它的解集为{x|x<-2或 1≤x<9}.

点评 本题主要考查用穿根法求分式不等式得解集,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知a2>b>a>1,则logb$\frac{b}{a}$,logba,logab的大小关系是(  )
A.logba<logab<logb$\frac{b}{a}$B.logb$\frac{b}{a}$<logba<logab
C.logba<logb$\frac{b}{a}$<logabD.logab<logb$\frac{b}{a}$<logba

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知不等式a≤x≤a+1成立时,不等式2≤x≤3a+1也成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知(logab)2+${2}^{lo{g}_{b}a}$=$\frac{17}{4}$,且a>b>1,能否确定a-a和b-2b的大小关系?若能,比较其大小;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.程序框图,如图所示,当箭头a指向①时输出S的值为m,当箭头a指向②时,输出S的值为n,则m+n=20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PA⊥PC,∠ADC=120°,底面ABCD为菱形,G为PC的中点,E,F分别为AB,PB上一点,AB=4$\sqrt{2}$,AE=$\sqrt{2}$,PB=4PF.
(1)求证:EF∥平面BDG;
(2)求二面角C-DF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π且tan$\frac{α}{2}$=$\frac{1}{2}$,sin(α+β)=$\frac{5}{13}$
(1)分别求cosα与cosβ的值;
(2)求tan(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{a}$=(m,-1),$\overrightarrow{b}$=(sinx,cosx),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$且满足f($\frac{π}{2}$)=1.
(1)求函数y=f(x)的最大值及其对应的x值;
(2)若f(α)=$\frac{1}{5}$,求$\frac{sin2α-2si{n}^{2}α}{1-tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin($\frac{π}{4}$+θ)=2$\sqrt{2}$
(1)将曲线C上各点的纵坐标伸长为原来的两倍,得到曲线C1,写出曲线C1的极坐标方程.
(2)射线θ=$\frac{π}{6}$与C1、l的交点分别为A、B,射线θ=-$\frac{π}{6}$与C1、l的交点分别为A1、B1,求△OAA1与△OBB1的面积之比.

查看答案和解析>>

同步练习册答案