精英家教网 > 高中数学 > 题目详情
16.圆x2+y2-4x+4y-1=0截直线3x-4y-4=0所得弦长等于2$\sqrt{5}$.

分析 把圆的方程化为标准形式,求出圆心和半径,再利用点到直线的距离公式求出弦心距,利用弦长公式求得弦长.

解答 解:圆x2+y2-4x+4y-1=0,即(x-2)2+(y+2)2 =9,个圆心为(2,-2),半径等于3.
求得圆心(2,-2)到直线3x-4y-4=0的距离d=$\frac{|6+8-4|}{\sqrt{9+16}}$=2,
可得弦长为2$\sqrt{{r}^{2}{-d}^{2}}$=2$\sqrt{9-4}$=2$\sqrt{5}$,
故答案为:2$\sqrt{5}$.

点评 本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是10的样本,若编号为58的产品在样本中,则该样本中产品的最大编号为74.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=Asin(ωx+φ)(A>0,ω>0)在x=1和x=-1处分别取得最大值和最小值,且对于?x1,x2∈[-1,1](x1≠x2)都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,则函数f(x+1)一定是(  )
A.周期为2的偶函数B.周期为2的奇函数C.周期为4的奇函数D.周期为4的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.把一枚骰子连续抛掷两次,记事件M为“两次所得点数均为奇数”,N为“至少有一次点数是5”,则P(N|M)=(  )
A.$\frac{2}{3}$B.$\frac{5}{9}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知在△ABC中,若sinA:sinB:sinC=2:3:4,则cosB=(  )
A.$\frac{11}{16}$B.-$\frac{11}{16}$C.$\frac{3}{16}$D.-$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.
(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?
(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)是定义在R上的奇函数,当x≥0时恒有f(x+2)=f(x),当x∈[0,2]时,f(x)=ex-1,则f(2014)+f(-2015)=(  )
A.1-eB.e-1C.-1-eD.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左顶点A作斜率为2的直线,与椭圆的另一个交点为B,与y轴的交点为C,已知|AB|=$\frac{6}{13}$|BC|.
(1)求椭圆的离心率;
(2)设动直线y=kx+m与椭圆有且只有一个公共点P,且与直线x=4相交于点Q,若x轴上存在一定点M(1,0),使得PM⊥QM,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义域为R的函数f(x)=$\left\{\begin{array}{l}\frac{1}{{|{x-2}|}},x≠2\\ 1,x=2\end{array}$,若关于x的函数h(x)=f2(x)+af(x)+$\frac{1}{2}$有5个不同的零点x1,x2,x3,x4,x5,则x12+x22+x32+x42+x52等于(  )
A.15B.20C.30D.35

查看答案和解析>>

同步练习册答案