精英家教网 > 高中数学 > 题目详情
在△ABC中,已知
AB
AC
=3
BA
BC

(1)求证:tanB=3tanA;
(2)若tanC=2,求A的值.
分析:(1)由题意可得AB•AC•cosA=3BA•BC•cosB,即AC•cosA=3BC•cosB,结合正弦定理可得sinBcosA=3cosBsinA,同除以cosAcosB可得答案;(2)由已知可得
tanA+tanB
1-tanA•tanB
=-2
,代入(1)得
4tanA
1-tan2A
=-2
,解得tanA=1或tanA=-
1
3
,结合cosA>0,可得答案.
解答:解:(1)因为
AB
AC
=3
BA
BC
,所以AB•AC•cosA=3BA•BC•cosB,…(2分)
即AC•cosA=3BC•cosB,由正弦定理知
AC
sinB
=
BC
sinA

从而sinBcosA=3cosBsinA…(4分)
因为A、B∈(0,π),结合上式可得cosA,cosB同号,只能为正,
同除以cosAcosB可得tanB=3tanA…(6分)
(2)因为tanC=2,所以tan[π-(A+B)]=2即tan(A+B)=-2…(8分)
tanA+tanB
1-tanA•tanB
=-2
,由(1)得
4tanA
1-3tan2A
=-2

解得tanA=1或tanA=-
1
3
…(12分)
因为cosA>0,故tanA=1,所以A=
π
4
…(13分)
点评:本题考查三角函数的运算,涉及向量的数量积,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知A、B、C成等差数列,求tg(
A
2
)+
3
tg(
A
2
)tg(
C
2
)+tg(
C
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=45°,a=2,b=
2
,则B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=
3
,b=
2
,1+2cos(B+C)=0,求:
(1)角A,B; 
(2)求BC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=60°,
AB
AC
=1,则△ABC的面积为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=1,b=2,cosC=
34

(1)求AB的长;
(2)求sinA的值.

查看答案和解析>>

同步练习册答案