精英家教网 > 高中数学 > 题目详情
已知f(x)=logax,g(x)=2loga(2x+t-2),(a>0,且a≠1,t∈R).
(Ⅰ)当t=4,x∈(0,+∞),且F(x)=g(x)-f(x)有最小值2时,求a的值;
(Ⅱ)当0<a<1,x∈(0,+∞)时,有f(x)≥g(x)恒成立,求实数t的取值范围.
考点:函数恒成立问题
专题:函数的性质及应用
分析:(Ⅰ)t=4,化简F(x)=g(x)-f(x)通过最小值2,列出不等式组,即可求a的值;
(Ⅱ)当0<a<1,x∈(0,+∞)时,有f(x)≥g(x)恒成立,转化为t≥-2x+
x
+2
在(0,+∞)上恒成立,通过构造二次函数,求出实数t的取值范围.
解答: 解:(Ⅰ)t=4时,F(x)=g(x)-f(x)=2loga(2x+2)-logax
=loga
4(x+1)2
x
=loga4(x+
1
x
+2),(x>0)

4(x+
1
x
+2)
的最小值为16,而F(x)有最小值2
a>1
loga16=2
∴a=4                                                            (5分)
(Ⅱ)0<a<1时,logax≥2loga(2x+t-2)恒成立,
即x≤(2x+t-2)2在(0,+∞)上恒成立,
x
≤2x+t-2
在(0,+∞)上恒成立,
t≥-2x+
x
+2
在(0,+∞)上恒成立,
x
=m(m>0),h(m)=-2m2+m+2

因为h(m)的最大值为
17
8

要使t≥h(m)恒成立,只需t≥
17
8
.(12分)
点评:本题考查函数的恒成立,构造法的应用,考查分析问题解决问题的能力,转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“a≤0”是“函数f(x)=x(
a
3
x2+
a-1
2
x-1)在区间(0,+∞)上单调递增”的(  )
A、充分必要条件
B、必要不充分条件
C、充分不必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

数据x1,x2,…,x8 平均数为4,方差为2,则数据 2x1-6,2x2-6,…,2x8-6 的平均数为
 
,方差为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对的边分别是a、b、c,已知△ABC的面积S=a2-(b-c)2
(Ⅰ)求sinA与cosA的值;
(Ⅱ)设b=λa,若cosC=
4
5
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=cos(x-
π
2
)+tan(π+x)是
 
函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x方程3sin(x+10°)+4cos(x+40°)-a=0有实数解,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y、z满足方程C:(x-3)2+(y-4)2+(z+5)2=2,则x2+y2+z2的最小值是(  )
A、8B、16C、25D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(2-|x|),则函数y=f(x)减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差不为零,a1=25,且a1、a11、a13成等比数列,则a1+a4+a7+…+a28=
 

查看答案和解析>>

同步练习册答案