已知
是实数,函数
.
(1)若
,求
的值及曲线
在点
处的切线方程.
(2)求
在
上的最大值.
(1)
,
;(2)
.
解析试题分析:
解题思路:(1)先求导,进而求得
值,利用导数的几何意义求切线方程;(2)求导,讨论
的根与区间
的关系,进而求得极值.
规律总结:导数的几何意义求切线方程:
;利用导数研究函数的单调性、极值、最值及与函数有关的综合题,都体现了导数的重要性;此类问题往往从求导入手,思路清晰;但综合性较强,需学生有较高的逻辑思维和运算能力.
试题解析:(1)
,因为
又当
时![]()
所以曲线
在
处的切线方程为
(2)令
,解得
,
当
即
时,
在
上单调递增,从而
.
当
即
时,
在
上单调递减,从而![]()
当
即
时,
在
上单调递减,
在单调递增,
从而
综上所述
.
考点:1.导数的几何意义;2.利用导数研究函数的最值.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=![]()
-ax(a∈R,e为自然对数的底数).
(1)讨论函数f(x)的单调性;
(2)若a=1,函数g(x)=(x-m)f(x)-![]()
+x2+x在区间(0,+
)上为增函数,求整数m 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,其中a,b∈R
(1)当a=3,b=-1时,求函数f(x)的最小值;
(2)若曲线y=f(x)在点(e,f(e))处的切线方程为2x-3y-e=0(e=2.71828 为自然对数的底数),求a,b的值;
(3)当a>0,且a为常数时,若函数h(x)=x[f(x)+lnx]对任意的x1>x2≥4,总有
成立,试用a表示出b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于三次函数
,定义
是
的导函数
的导函数,若方程
有实数解
,则称点
为函数
的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数
都关于点
对称:
②存在三次函数
,若
有实数解
,则点
为函数
的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数
,则: ![]()
其中所有正确结论的序号是( ).
| A.①②④ | B.①②③ | C.①③④ | D.②③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com