精英家教网 > 高中数学 > 题目详情

已知是实数,函数.
(1)若,求的值及曲线在点处的切线方程.
(2)求上的最大值.

(1);(2)

解析试题分析:
解题思路:(1)先求导,进而求得值,利用导数的几何意义求切线方程;(2)求导,讨论的根与区间的关系,进而求得极值.
规律总结:导数的几何意义求切线方程:;利用导数研究函数的单调性、极值、最值及与函数有关的综合题,都体现了导数的重要性;此类问题往往从求导入手,思路清晰;但综合性较强,需学生有较高的逻辑思维和运算能力.
试题解析:(1),因为 
又当
所以曲线处的切线方程为   
(2)令,解得
时,上单调递增,从而.
时,上单调递减,从而
时,上单调递减,在单调递增,
从而                       
综上所述.
考点:1.导数的几何意义;2.利用导数研究函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的导函数为.求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)= -ax(a∈R,e为自然对数的底数).
(1)讨论函数f(x)的单调性;
(2)若a=1,函数g(x)=(x-m)f(x)-+x2+x在区间(0,+)上为增函数,求整数m 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,求函数的单调区间;
(2)设函数在区间上是增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中a,b∈R
(1)当a=3,b=-1时,求函数f(x)的最小值;
(2)若曲线y=f(x)在点(e,f(e))处的切线方程为2x-3y-e=0(e=2.71828 为自然对数的底数),求a,b的值;
(3)当a>0,且a为常数时,若函数h(x)=x[f(x)+lnx]对任意的x1>x2≥4,总有成立,试用a表示出b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2+bln x在x=1处有极值.
(1)求a,b的值;
(2)判断函数y=f(x)的单调性并求出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于三次函数,定义的导函数的导函数,若方程有实数解,则称点为函数的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数都关于点对称:
②存在三次函数,若有实数解,则点为函数的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数,则:
其中所有正确结论的序号是(     ).

A.①②④ B.①②③ C.①③④ D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设曲线在点(1,1)处的切线与轴的交点的横坐标为,则的值为          ;

查看答案和解析>>

同步练习册答案