精英家教网 > 高中数学 > 题目详情

已知函数,其中a,b∈R
(1)当a=3,b=-1时,求函数f(x)的最小值;
(2)若曲线y=f(x)在点(e,f(e))处的切线方程为2x-3y-e=0(e=2.71828 为自然对数的底数),求a,b的值;
(3)当a>0,且a为常数时,若函数h(x)=x[f(x)+lnx]对任意的x1>x2≥4,总有成立,试用a表示出b的取值范围.

(1);(2);(3)时,时,

解析试题分析:(1)利用导数判断出函数的单调性,即可求出的最小值;(2)要注意给出某点处的切线方程,就既有该点的坐标,也有该点出切线的斜率,利用这两个条件可求出a与b的值;(3)解决本题的关键是由“对任意的x1>x2≥4,总有成立”转化出“上单调递增”,从而再次转化为导函数大于0的问题求解.解题过程中要注意对参数的合理分类讨论.
试题解析:(1)当a=3,b=-1时,

∵x>0,∴0<x<时f  '(x)<0,x>时,f '(x)>0
上单调递减,在上单调递增
处取得最小值
          4分
(2)∵
  (1)
又切点(e,f(e))在直线2x-3y-e=0上
∴切点为
  (2)
联立(1)(2),解得.          8分
(3)由题意,对任意的x1>x2≥4,总有成立

则函数p(x)在上单调递增
上恒成立
上恒成立          10分
构造函数

∴F(x)在上单调递减,在上单调递增
(i)当,即时,F(x)在上单调递减,在上单调递增

,从而          12分
(ii)当,即时,F(x)在(4,+∞)上单调递增
,从而          13分
综上,当时,时,      14分
考点:导数,函数的单调性,参数的取值范围,分类与整合.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,在点处的切线方程是(e为自然对数的底)。
(1)求实数的值及的解析式;
(2)若是正数,设,求的最小值;
(3)若关于x的不等式对一切恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是实数,函数.
(1)若,求的值及曲线在点处的切线方程.
(2)求上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象为曲线E.
(1)若a = 3,b = -9,求函数f(x)的极值;
(2)若曲线E上存在点P,使曲线E在P点处的切线与x轴平行,求a,b的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
(1)求函数的极值;
(2)设函数,对,都有,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln(x+1)+ax2-x,a∈R.
(1)当时,求函数y=f(x)的极值;
(2)是否存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b)?若存在,求实数a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的图像过原点,且在点处的切线与轴平行,对任意,都有.
(1)求函数在点处切线的斜率;
(2)求的解析式;
(3)设,对任意,都有.求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,
(1)若的单调减区间是,求实数a的值;
(2)若对于定义域内的任意x恒成立,求实数a的取值范围;
(3)设有两个极值点, 且.若恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

曲线C:处的切线方程为     

查看答案和解析>>

同步练习册答案