精英家教网 > 高中数学 > 题目详情
(2006•重庆一模)等差数列{an}中,a1+a4+a10+a16+a19=150,则a20-a26+a16的值是
30
30
分析:把已知等式左边利用等差数列的性质化简,求出a10的值,然后利用等差数列的通项公式化简所求的式子,去括号合并后,再利用等差数列的通项公式变形,将a10的值代入即可求出值.
解答:解:∵a1+a4+a10+a16+a19=5a10=150,
∴a10=30,
则a20-a26+a16=(a1+19d)-(a1+25d)+(a1+15d)
=a1+9d=a10=30.
故答案为:30
点评:此题考查了等差数列的性质,以及等差数列的通项公式,熟练掌握性质及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•重庆一模)定义在R上的奇函数f (x)满足;当x>0时,f (x)=2006x+log2006x,则在R上方程f (x)=0的实根个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•重庆一模)已知函数f(x)=a(2cos2
x2
+sinx)+b

(I)当a=1时,求函数f (x)的单调递增区间;
(Ⅱ)当a<0且x∈[0,π]时,函数f (x)的值域是[3,4],求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•重庆一模)已知f (x)=log2x,则函数y=f-1(1-x)的大致图象是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•重庆一模)设两个非零向量
b
=(
x
x-2
1
x-2
)
c
=(x-a+1,a-4)
,解关于x的不等式
b
c
>2
(其中a>1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•重庆一模)已知函数f(x)=|1-
1x
|

(I)是否存在实数a,b(a<b),使得函数y=f (x)的定义域和值域都是[a,b].若存在,求出a,b的值;若不存在,请说明理由;
(II)若存在实数a,b(a<b),使得函数y=f (x)的定义域为[a,b],值域为[ma,mb](m≠0).求实数m的取值范围.

查看答案和解析>>

同步练习册答案