精英家教网 > 高中数学 > 题目详情
(12分)若f(x)是定义在(0, +∞)上的增函数,且对一切x, y>0,满足f()=f(x)-f(y).
(1)求f(1)的值;
(2)若f(6)=1,解不等式f(x+3)-f()<2.
(1)f(1)=0;(2)-3<x<9
令x=y=1可以求出f(1);第二问紧抓f()=f(x)-f(y),将不等式转化为f()<f (6),然后利用单调性去掉对应法则f.对于抽象函数问题注意赋值法的应用,对于函数不等式一般都是利用其单调性去掉对应法则f.
解:(1)令x=y=1f(1)=0
(2)易知x+3>0    ①
又由f()=f(x)-f(y) f(x+3)-f()=f[3(x+3)]
即f [3(x+3)]<2=f(6)+f(6)
f [3(x+3)]-f(6)<f(6)
f()<f (6) 由f(x)在(0,+∞)↑
<6  ②
由①②知-3<x<9
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)判断的奇偶性;
(Ⅱ)设函数在区间上的最小值为,求的表达式;
(Ⅲ)若,证明:方程有两个不同的正数解.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
为二次函数,-1和3是方程的两根,
(1)求的解析式;
(2)若在区间上,不等式有解,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

、设是定义在上的增函数,对任意,满足
(1)、求证:①当
(2)、若,解不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数是定义在上的偶函数,当时,是实数)。
(1)当时,求f(x)的解析式;
(2)若函数f(x)在(0,1]上是增函数,求实数的取值范围;
(3)是否存在实数,使得当时,f(x)有最大值1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,既是偶函数,又是区间上的增函数的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设f(x)定义在[-2,2]上的偶函数f(x)在[0,2]上单调递减,
求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=loga(x2+2x-3),当x=2时,y>0,则此函数单调递减区间是(    )
A.(-∞,-1)B.(-1,+∞)C.(-∞,-3)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数 为奇函数,若函数在区间上单调递增,则的取值范围是
A.B.C.D.

查看答案和解析>>

同步练习册答案