精英家教网 > 高中数学 > 题目详情
已知函数 为奇函数,若函数在区间上单调递增,则的取值范围是
A.B.C.D.
B
解:因为函数 为奇函数,若函数在区间上单调递增,利用对称性可知,函数在给定定义域上,先减后增再减,因此,且a>1,因此选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)= (b<0)的值域是[1,3],
(1)求bc的值;
(2)判断函数F(x)=lgf(x),当x∈[-1,1]时的单调性,并证明你的结论;
(3)若t∈R,求证:lgF(|t|-|t+|)≤lg.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数
(Ⅰ)当时,解不等式
(Ⅱ)讨论函数的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-alnx(a∈R).
(1)若a=2,求f(x)的单调区间和极值;
(2)求f(x)在[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)若f(x)是定义在(0, +∞)上的增函数,且对一切x, y>0,满足f()=f(x)-f(y).
(1)求f(1)的值;
(2)若f(6)=1,解不等式f(x+3)-f()<2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

由函数的最大值与最小值可以得其值域为 (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,则下列结论正确的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间;
(2)函数的图象在处切线的斜率为若函数在区间(1,3)上不是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数满足:①定义在上;②当时,;③对于任意的,有.
(1)取一个对数函数,验证它是否满足条件②,③;
(2)对于满足条件①,②,③的一般函数,判断是否具有奇偶性和单调性,并加以证明.

查看答案和解析>>

同步练习册答案