精英家教网 > 高中数学 > 题目详情

【题目】设函数).

(1)若函数在定义域上是单调函数,求实数的取值范围;

(2)求函数的极值点;

(3)令 ,设 是曲线上相异三点,其中.求证: .

【答案】(1)实数的取值范围是

(2)时, 有唯一极小值点

时, 有一个极大值点和一个极小值点

时, 无极值点.

(3)证明见解析

【解析】试题分析:(1)利用导数转化为: 上恒成立.再根据变量分离转化为对应函数最值: 最大值或最小值,即得.(2)实质为讨论一元二次方程解的情况:当时,方程无解,函数无极值点; 时,方程有一解,函数有一个极值点; 时,方程有两解,函数有两个极值点;(3)借助第三量进行论证,先证,代入化简可得,构造函数,其中),利用导数易得上单调递增,即,即有,同理可证

试题解析:解:(1)

函数在定义域上是单调函数, 上恒成立.

恒成立,得.

恒成立,即恒成立.

上没有最小值, 不存在实数使恒成立.

综上所述,实数的取值范围是.

(2)由(1)知当时,函数无极值点.

时, 有两个不同解,

时, ,即

时, 上递减,在上递增, 有唯一极小值点

时, .

上递增,在递减,在递增,

有一个极大值点和一个极小值点.

综上所述, 时, 有唯一极小值点

时, 有一个极大值点和一个极小值点

时, 无极值点.

(3)先证: ,即证

即证

),

所以上单调递增,即,即有,所以获证.

同理可证:

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象在点处有相同的切线.

(Ⅰ)若函数的图象有两个交点,求实数的取值范围;

(Ⅱ)若函数有两个极值点 ,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子公司开发一种智能手机的配件,每个配件的成本是15元,销售价是20元,月平均销售件,通过改进工艺,每个配件的成本不变,质量和技术含金量提高,市场分析的结果表明,如果每个配件的销售价提高的百分率为,那么月平均销售量减少的百分率为,记改进工艺后电子公司销售该配件的月平均利润是(元).

(1)写出的函数关系式;

(2)改进工艺后,试确定该智能手机配件的售价,使电子公司销售该配件的月平均利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖出一个圆锥所得的几何体;图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为(  )

A. ①② B. ①③ C. ②④ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,定点(常数)的直线与曲线相交于两点.

(1)若点的坐标为,求证:

(2)若,以为直径的圆的位置是否恒过一定点?若存在,求出这个定点,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,当时, .

1)直接写出函数的增区间(不需要证明);

(2)求出函数 的解析式;

3)若函数 求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左顶点为,右焦点为 为原点, 轴上的两个动点,且,直线分别与椭圆交于 两点.

 

(Ⅰ)求的面积的最小值;

(Ⅱ)证明: 三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一片成熟森林的总面积为 (近期内不再种植),计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.

(1)求每年砍伐面积的百分比;

(2)到今年为止,该森林已砍伐了多少年?

(3)今后最多还能砍伐多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形, 底面 ,过点的平面与棱 分别交于点 三点均不在棱的端点处). 

(Ⅰ)求证:平面平面

(Ⅱ)若平面,求的值;

(Ⅲ)直线是否可能与平面平行?证明你的结论.

查看答案和解析>>

同步练习册答案