【题目】已知函数与的图象在点处有相同的切线.
(Ⅰ)若函数与的图象有两个交点,求实数的取值范围;
(Ⅱ)若函数有两个极值点, ,且,证明: .
【答案】(Ⅰ);(Ⅱ)证明过程见解析;
【解析】(Ⅰ)首先根据两函数在某点处有相同的切线,建立关于两函数解析式中参数的方程,求得两函数的解析式,再由题意构造新函数,将问题转化为新函数的单调性与最值问题进行求解;(Ⅱ)由题意,可将问题转化为其导数的两个根,再根据其函数的单调性,从而证明不等式立.
试题解析:(Ⅰ)因为, ,根据题意,得解得
所以.
设,则,
当时, ,当时, ,
所以,
又因为→时, →;当→时, →,
故欲使两图象有两个交点,只需, ,
所以实数的取值范围为.
(Ⅱ)由题意,函数,其定义域为,
,
令,得,其判别式,
函数有两个极值点, ,等价于方程在内有两不等实根,又,故.
所以,且, ,
,
令, ,
则,
由于,∴,故在上单调递减.
故.
所以,
所以.
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,且离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于、两点,以为对角线作正方形,记直线与轴的交点为,问、两点间距离是否为定值?如果是,求出定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各个城市,得到观看该节目的人数(单位:千人),如茎叶图所示,其中一个数字被污损.
(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率;
(2)随着节目的播出,极大激发了观众对成语知识学习积累的热情,从中获益匪浅.现从观看该节目的观众中随机统计了位观众的周均学习成语知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如下表所示),
年龄x(岁) | ||||
周均学习成语知识时间y(小时) |
由表中数据,试求线性回归方程,并预测年龄为岁观众周均学习成语知识时间.
参考公式:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某教研机构随机抽取某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成时,所作的频率分布直方图如图所示,则原始茎叶图可能是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 满足 (其中 , ).
(1)求 的表达式;
(2)对于函数 ,当 时, ,求实数 的取值范围.
(3)当 时, 的值为负数,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,右焦点,过点的直线交椭圆于两点.
(1)求椭圆的方程;
(2)若点关于轴的对称点为 ,求证: 三点共线;
(3) 当面积最大时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数().
(1)若函数在定义域上是单调函数,求实数的取值范围;
(2)求函数的极值点;
(3)令, ,设, , 是曲线上相异三点,其中.求证: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com