【题目】已知函数
是定义在
上的偶函数,当
时,
.
(1)直接写出函数
的增区间(不需要证明);
(2)求出函数
,
的解析式;
(3)若函数
,
,求函数
的最小值.
【答案】(1)增区间为
;(2)
;(3)
.
【解析】试题分析:(1)根据奇偶性,结合函数简图可得函数的增区间;(2)因为
,
,所以根据函数
是定义在
上的偶函数,
, 且当
时,
,
时函数
的解析式,综合可得函数
的解析式;(3)根据(1)可得函数
的解析式,结合二次函数的图象和性质,对
进行分类讨论,进而可得函数
的最小值的表达式.
试题解析:(1)
的增区间为
.
(2)设
,则
,![]()
,
由已知
,
当
时,
,故函数
的解析式为:
.
(3)由(2)可得:
,对称轴为:
,
当
时,
,此时函数
在区间
上单调递增,故
的最小值为
,
当
时,
,此时函数
在对称轴处取得最小值,故
的最小值为
,
当
时,
,此时函数
在区间
上单调递减,故
的最小值为
.
综上:所求最小值为
.
科目:高中数学 来源: 题型:
【题目】2016年入冬以来,各地雾霾天气频发,
频频爆表(
是指直径小于或等于2.5微米的颗粒物),各地对机动车更是出台了各类限行措施,为分析研究车流量与
的浓度是否相关,某市现采集周一到周五某一时间段车流量与
的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量 | 50 | 51 | 54 | 57 | 58 |
| 69 | 70 | 74 | 78 | 79 |
(1)请根据上述数据,在下面给出的坐标系中画出散点图;
![]()
(2)试判断
与
是否具有线性关系,若有请求出
关于
的线性回归方程
,若没有,请说明理由;
(3)若周六同一时间段的车流量为60万辆,试根据(2)得出的结论,预报该时间段的
的浓度(保留整数).
参考公式:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经销商经销某种农产品,在一个销售季度内,每售出
该产品获利润500元,未售出的产品,每
亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如图所示.经销商为下一个销售季度购进了
该农产品.以
(
)表示下一个销售季度内的市场需求量,
(单位:元)表示下一个销售季度内经销该农产品的利润.
(Ⅰ)将
表示为
的函数;
(Ⅱ)根据直方图估计利润
不少于57000元的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
(
).
(1)若函数
在定义域上是单调函数,求实数
的取值范围;
(2)求函数
的极值点;
(3)令
,
,设
,
,
是曲线
上相异三点,其中
.求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将7名应届师范大学毕业生分配到3所中学任教.
(1)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?
(2)一所学校去4个人,另一所学校去2个人,剩下的一个学校去1个人,有多少种不同的分配方案?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,曲线
是圆心在极轴上,且经过极点的圆.已知曲线
上的点
对应的参数
,射线
与曲线
交于点
.
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)若点
,
在曲线
上,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水
(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药
(单位:微克)的统计表:
![]()
(1)令
,利用给出的参考数据求出
关于
的回归方程
.(
,
精确到0.1)
参考数据:
,
,![]()
其中
,![]()
(2)对于某种残留在蔬菜上的农药,当它的残留量不高于20微克时对人体无害,为了放心食用该蔬菜,请估计至少需用用多少千克的清水清洗1千克蔬菜?(精确到0.1,参考数据
)
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com