精英家教网 > 高中数学 > 题目详情

【题目】将7名应届师范大学毕业生分配到3所中学任教.

(1)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?

(2)一所学校去4个人,另一所学校去2个人,剩下的一个学校去1个人,有多少种不同的分配方案?

【答案】(1);(2).

【解析】试题分析:

(1)由题意利用分步乘法计数原理,分三步可得总的分配方案有(种);

(2)由题意利用分步乘法计数原理,分四步可得总的分配方案有(种).

试题解析:

(1)利用分步乘法计数原理,第一步,4个人分到甲学校,有种分法;第二步,2个人分到乙学校,有种分法;第三步,剩下的1个人分到丙学校,有种分法,所以,总的分配方案有(种)

(2)同样用分步乘法计数原理,第一步,选出4人有种方法;第二步,选出2人有种方法;第三步,选出1人有种方法;第四步,将以上分出的三伙人进行全排列有种方法.所以分配方案有(种)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的单调区间和极值;

(2)是否存在实数,使得函数上的最小值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子商务公司对10 000名网络购物者2017年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9],其频率分布直方图如图所示.

(1)直方图中的a=_____;

(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为梯形, 平面 中点.

(1)求证:平面平面

(2)线段上是否存在一点,使平面?若有,请找出具体位置,并进行证明:若无,请分析说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,当时, .

1)直接写出函数的增区间(不需要证明);

(2)求出函数 的解析式;

3)若函数 求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若函数为定义域上的单调函数,求实数的取值范围;

(Ⅱ)当时,函数的两个极值点为 ,且.证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调递减区间;

(2)当时,设函数.若存在区间,使得函数上的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;

(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;

(3)若为定义域上的“局部奇函数”,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】媒体为调查喜欢娱乐节目是否与性格外向有关,随机抽取了400名性格外向的和400名性格内向的居民,抽查结果用等高条形图表示如下图:

(1)填写完整如下列联表;

(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.001的前提下认为喜欢娱乐节目与性格外向有关?

参考数据及公式:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案