精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+bx2+cx的导函数的图象关于直线x=2对称.
(1)求b的值;
(2)若f(x)在x=t处取得极小值,记此极小值为g(t),求g(t)的定义域和值域.
分析:(1)函数f(x)=x3+bx2+cx的导函数的图象关于直线x=2对称,则求出f′(x)得到一个二次函数,利用x=-
b
2a
=2求出b即可;(2)求出f′(x),由(1)得函数的对称轴为x=2,讨论c的取值范围求出g(t)的定义域和值域即可.
解答:解:(1)f′(x)=3x2+2bx+c
因为函数f′(x)的图象关于直线x=2对称,
所以-
2b
6
=2
,于是b=-6
(2)由(Ⅰ)知,f(x)=x3-6x2+cx
f′(x)=3x2-12x+c=3(x-2)2+c-12
(ⅰ)当c≥12时,f′(x)≥0,此时f(x)无极值.
(ii)当c<12时,f′(x)=0有两个互异实根x1,x2
不妨设x1<x2,则x1<2<x2
当x<x1时,f′(x)>0,f(x)在区间(-∞,x1)内为增函数;
当x1<x<x2时,f′(x)<0,f(x)在区间(x1,x2)内为减函数;
当x>x2时,f′(x)>0,f(x)在区间(x2,+∞)内为增函数.
所以f(x)在x=x1处取极大值,在x=x2处取极小值.
因此,当且仅当c<12时,函数f(x)在x=x2处存在唯一极小值,所以t=x2>2.
于是g(t)的定义域为(2,+∞).
由f′(t)=3t2-12t+c=0得c=-3t2+12t.
于是g(t)=f(t)=t3-6t2+ct=-2t3+6t2,t∈(2,+∞).
当t>2时,g′(t)=-6t2+12t=6t(2-t)<0
所以函数g(t)在区间(2,+∞)内是减函数,
故g(t)的值域为(-∞,8)
点评:考查学生利用导数求函数函数的单调性及确定函数极值存在位置的能力,以及利用导数求函数最值的能力.利用导数研究函数的单调性是函数的一个极其重要的应用,它大大简化了证明单调性的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案