精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中,长度为定值的线段EF在线段B1D1上滑动,现有五个命题如下:
①AC⊥BE;
②EF平面A1BD;
③直线AE与BF所成角为定值;
④直线AE与平面BD1所成角为定值;
⑤三棱锥A-BEF的体积为定值.
其中正确命题序号为______.
①正确.如图1所示,连接BD,由正方体ABCD-A1B1C1D1中可得AC⊥BD,BB1⊥AC,BD∩BB1=B,∴AC⊥平面BDD1B1,∴AC⊥BE;
②正确.如图图2所示,∵B1D1BD,B1D1?平面A1BD,而BD?平面A1BD,∴EF平面A1BD;
③不正确.如图3所示,建立空间直角坐标系,不妨设正方体的棱长为1,|EF|=m,F(a,b,1),
则E(a+
2
2
m,b+
2
2
m,1)
.又A(1,0,0),B(1,1,0).
AE
=(a+
2
2
m-1,b+
2
2
m,1)
BF
=(a-1,b-1,1),
cos<
AE
BF
=
AE
BF
|
AE
||
BF
|
=
(a+
2
2
m-1)(a-1)+(b+
2
2
m)(b-1)+1
(a+
2
2
m-1)2+(b+
2
2
m)2+1
(a-1)2+(b-1)2+1
,与a,b的取值有关系.
④如图3所示,取对角面BD1的法向量为
AC
=(-1,1,0)

设AE与平面BD1所成的角为θ,则sinθ=|cos<
AE
n
>|
=
|
AE
n
|
|
AE
||
n
|
=
|1-a-
2
2
m+b+
2
2
m|
(a+
2
2
m-1)2+(b+
2
2
m)2+1
2
与a,b的取值有关系;
⑤正确.由①可知:AC⊥平面BDD1B1,∴点A到平面BEF的距离=
1
2
|AC|
,而△BEF的面积=
1
2
|EF||BB1|
,∴VA-BEF=
1
3
×
1
2
|AC|•
1
2
|EF||BB1|
,又|AC|,|EF|,|BB1|都为定值,因此三棱锥A-BEF的体积为定值.
综上可知:正确答案为①②⑤.
故答案为①②⑤.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①若ab>0,a>b,则
1
a
1
b

②若a>|b|,则a2>b2
③若a>b,c>d,则a-c>b-d;
④若a<b,m>0,则
a
b
a+m
b+m

其中真命题的序号是:______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是(  )
①原命题为真,它的否命题为假
②原命题为真,它的逆命题不一定为真
③一个命题的逆命题为真,它的否命题一定为真
④一个命题的逆否命题为真,它的否命题一定为真.
A.①②B.②③C.③④D.②③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列四个命题:
(1)平面内的一条直线与平面外的一条直线是异面直线;
(2)若三个平面两两相交,则这三个平面把空间分成7部分;
(3)用一个面去截棱锥,底面与截面之间的部分叫棱台;
(4)一条直线与两条异面直线中的一条直线相交,那么它和另一条直线可能相交、平行或异面.
其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若命题“?x∈R,x2+ax+1≥0”是真命题,则实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列命题中:
①若
a
b
共线,则
a
b
所在的直线平行;
②若
a
b
所在的直线是异面直线,则
a
b
一定不共面;
③若
a
b
c
三向量两两共面,则
a
b
c
三向量一定也共面;
④已知三向量
a
b
c
,则空间任意一个向量
p
总可以唯一表示为
p
=x
a
+y
b
+z
c

其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在R上的函数f(x)=2x+
1
2x

(1)判断f(x)为奇偶性;
(2)证明f(x)函数在[0,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列说法:
①函数f(x)=lnx+3x-6的零点只有1个且属于区间(1,2);
②若关于x的不等式ax2+2ax+1>0恒成立,则a∈(0,1);
③函数y=x的图象与函数y=sinx的图象有3个不同的交点;
④函数y=sinxcosx+sinx+cosx,x∈[0,
π
4
]
的最小值是1.
正确的有______.(请将你认为正确的说法的序号都写上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知下列命题:
①命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”
②命题p:?x∈R,x2+x+1≠0,则?p:?x∈R,x2+x+1=0.
③若p∨q为真命题,则p,q均为真命题
④“x>2”是“x2-3x+2>0”的充分不必要条件
其中,真命题的个数有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

同步练习册答案