精英家教网 > 高中数学 > 题目详情
是定义在R上的可导函数,当x≠0时,,则关于x的函数的零点个数为(    )
A.lB.2C.0D.0或 2
C

试题分析:由,得
时,,即,函数单调递增;
时,,即,函数单调递减.
,函数的零点个数等价为函数的零点个数.
时,,当时,,所以函数无零点,所以函数的零点个数为0个.故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若方程有且只有一个解,求实数m的取值范围;
(3)当时,若有,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求函数.的单调区间;
(2)设函数的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求函数的单调区间;
(2)若时,函数在闭区间上的最大值为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定建立生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.
,请你分析能否采用函数模型y=作为生态环境改造投资方案.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=xh(x)=,设F(x)=f(x)-h(x),求F(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=xg(x)=x2-2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调增区间是                     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果函数满足:对于任意的,都有恒成立,则的取值范围是(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案