精英家教网 > 高中数学 > 题目详情
5.在(1+x)3+(1+x)4+(1+x)5+…+(1+x)10的展开式中,含x2项的系数为(  )
A.162B.163C.164D.165

分析 由题意可得展开式中含x2项的系数为C32+C42+…+C102,再利用二项式系数的性质化为C113-C22,从而得到答案.

解答 解:(1+x)3+(1+x)4+(1+x)5+…+(1+x)10的展开式中
含x2项的系数为C32+C42+…+C102=C113-C22=164,
故选:C.

点评 本题主要考查二项式定理的应用,求展开式中某项的系数,二项式系数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设函数f′(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=f′(x)-3,则4f(x)>f′(x)的解集为($\frac{ln2}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,侧面PAB⊥底面ABCD,PA=2$\sqrt{2}$,PB=2.
(I)求证:AC⊥平面PBD;
(II)若∠DAB=60°,求二面角B-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x、y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+y-4≤0\\{({x-2})^2}+{y^2}≤4\end{array}\right.$,则z=-$\frac{{\sqrt{3}}}{3}$x+y的范围为$[{-2\sqrt{3},2-\frac{{2\sqrt{3}}}{3}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,底面ABCD为菱形.
(1)若E为线段A1C1的中点,证明:BE⊥AC;
(2)若A1B1=2,A1A=4,∠ADC=120°,求三棱锥B-AD1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一袋子中有10个大小相同标有数字的小球,其中4个小球标有数字1,3个小球标有数字2,2个小球标有数字3,1个小球标有数字4.从袋子中任取3个小球.
(Ⅰ)求所取的3个小球中所标有数字恰有两个相同的概率;
(Ⅱ)X表示所取的3个小球所标数字的最大值,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=m•9x-3x,若存在非零实数x0,使得f(-x0)=f(x0)成立,则实数m的取值范围是(  )
A.m≥$\frac{1}{2}$B.m≥2C.0<m<$\frac{1}{2}$D.0<m≤$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知锐二面角α-l-β,A∈l,C∉l,C∈α,且AC⊥l,B∈l,D∉l,D∈β,BD⊥l.若$\overrightarrow{AC}$=(-2,1,-1),$\overrightarrow{BD}$=(-1,-1,-2),则二面角α-l-β的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直三棱柱ABC-A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,D为BC的中点.则直线DB1与平面A1C1D所成角的正弦值$\frac{4}{15}\sqrt{5}$.

查看答案和解析>>

同步练习册答案