精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象如图所示.

(Ⅰ)求的值;

(Ⅱ)若函数处的切线方程为,求函数的解析式;

(Ⅲ)在(Ⅱ)的条件下,函数的图象有三个不同的交点,求的取值范围.

【答案】(Ⅰ)(Ⅱ)(Ⅲ)

【解析】试题分析:(I)由图可知函数的图象过点(0,3),即,且,由此列方程组可求得.(II)由(I)知,将代入切线方程,求得切点坐标为,即,且切线的斜率为,即,由此建立方程组,求得.(III)由(II)知.将原问题转化为: 有三个不等实根,即: 轴有三个交点,只需要其极大值大于零,极小值小于零,利用导数求出的极值,列不等组即可求得的取值范围.

试题解析:

函数的导函数为

(Ⅰ)由图可知函数的图象过点(0,3),且

(Ⅱ)依题意

解得

所以

(Ⅲ).可转化为: 有三个不等实根,即: 轴有三个交点;

0

-

0

极大值

极小值

.当且仅当时,有三个交点,

故而, 为所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,设P是圆上的动点,点D是P在x轴上的投影,M为线段PD上一点,且

(1)当P在圆上运动时,求点M的轨迹C的方程;

(2)求过点(3,0)且斜率为的直线被轨迹C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数.

(1)讨论函数上的单调性;

(2)当时,若存在,使得,求实数的取值范围.(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系椭圆)的离心率是抛物线的焦点的一个顶点

(1)求椭圆的方程

(2)设上的动点且位于第一象限在点处的切线交于不同的两点线段的中点为直线与过且垂直于轴的直线交于点

(i)求证:点在定直线上

(ii)直线轴交于点记△的面积为的面积为的最大值及取得最大值时点的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥底面的中点

(1)求的长

(2)求二面角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,,

,侧棱底面.

I)证明:平面平面

II)若直线与平面所成的角的余弦值为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若满足:对任意的,都有恒成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的单调递减区间;

(2)求函数在区间上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线与直线)交于两点.

1)当时,分别求在点处的切线方程;

2轴上是否存在点,使得当变动时,总有?说明理由.

查看答案和解析>>

同步练习册答案