精英家教网 > 高中数学 > 题目详情

【题目】如图,设P是圆上的动点,点D是P在x轴上的投影,M为线段PD上一点,且

(1)当P在圆上运动时,求点M的轨迹C的方程;

(2)求过点(3,0)且斜率为的直线被轨迹C所截线段的长度.

【答案】;(

【解析】试题分析:()由题意P是圆上的动点,点DPx轴上的射影,MPD上一点,且,利用相关点法即可求轨迹;()由题意写出直线方程与曲线C的方程进行联立,利用根与系数的关系得到线段长度

试题解析:()设M的坐标为(x,yP的坐标为(xp,yp

由已知 xp=x,

P在圆上, ,即C的方程为

)过点(30)且斜率为的直线方程为

设直线与C的交点为

将直线方程代入C的方程,得

线段AB的长度为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 平面 的中点.

(Ⅰ)证明: 平面

(Ⅱ)求多面体的体积;

(Ⅲ)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】漳州市博物馆为了保护一件珍贵文物,需要在馆内一种透明又密封的长方体玻璃保护罩内充入保护液体.该博物馆需要支付的总费用由两部分组成:①罩内该种液体的体积比保护罩的容积少0.5立方米,且每立方米液体费用500元;②需支付一定的保险费用,且支付的保险费用与保护罩容积成反比,当容积为2立方米时,支付的保险费用为4000元.

(Ⅰ)求该博物馆支付总费用与保护罩容积之间的函数关系式;

(Ⅱ)求该博物馆支付总费用的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足

(1)求证:数列为等比数列;

(2)若,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,判断函数的单调性;

(2)若函数在定义域内单调递减,求实数的取值范围;

(3)当时,关于的方程上恰有两个不相等的实数根,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 经过椭圆 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆 两点,且).

(1)求椭圆的方程;

(2)当三角形的面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在常数,使等式对于一切都成立?若不存在,说明理由;若存在请用数学归纳法证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数曲线在点处的切线与直线垂直(其中为自然对数的底数).

(1)求的解析式及单调递减区间

(2)若存在使函数成立求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象如图所示.

(Ⅰ)求的值;

(Ⅱ)若函数处的切线方程为,求函数的解析式;

(Ⅲ)在(Ⅱ)的条件下,函数的图象有三个不同的交点,求的取值范围.

查看答案和解析>>

同步练习册答案