精英家教网 > 高中数学 > 题目详情

【题目】如图, 平面 的中点.

(Ⅰ)证明: 平面

(Ⅱ)求多面体的体积;

(Ⅲ)求二面角的正切值.

【答案】(Ⅰ)证明见解析(Ⅱ)(Ⅲ)

【解析】试题分析】Ⅰ)先运用线面垂直的性质定理证明,再运用等腰三角形的性质证明,进而运用线面垂直的判定定理证明平面Ⅱ)先求三棱锥的高和底面三角形面积,用三棱锥的体积公式求出体积(Ⅲ)先运用二面角平面角的定义找出二面角的平面角,再构造直角三角形,运用相似三角形的性质求出,最后运用解直角三角形的正切函数的定义求出

(Ⅰ)证明:∵平面

平面

又∵,点边中点

故由①②得平面

(Ⅱ)过点延长线于点

平面

(Ⅲ)延长延长线于,过点,连结

由(Ⅱ)可得: 的平面角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 .

(1)若,证明: 时, 成立;

(2)讨论函数的单调性;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的短轴长为2,且函数的图象与椭圆仅有两个公共点,过原点的直线与椭圆交于两点.

(1)求椭圆的标准方程;

(2)点为线段的中垂线与椭圆的一个公共点,求面积的最小值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段 后画出如下频率分布直方图.观察图形的信息,回答下列问题:

Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);

() 估计这次考试的及格率(60分及以上为及格)和平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1存在使得的最大值,求取值范围;

2任意成立时,的最大值为1,取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了传承经典,促进学生课外阅读,某校从高中年级和初中年级各随机抽取100名学生进行有关对中国四大名著常识了解的竞赛.图1和图2分别是高中年级和初中年级参加竞赛的学生成绩按照分组,得到的频率分布直方图.

(1)分别计算参加这次知识竞赛的两个学段的学生的平均成绩;

(2)规定竞赛成绩达到为优秀,经统计初中年级有3名男同学,2名女同学达到优秀,现从上述5人中任选两人参加复试,求选中的2人恰好都为女生的概率;

(3)完成下列的列联表,并回答是否有99%的把握认为“两个学段的学生对四大名著的了解有差异”?

附:

临界值表:

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂第一季度某产品月生产量依次为10万件,12万件,13万件,为了预测以后每个月的产量,以这3个月的产量为依据,用一个函数模拟该产品的月产量(单位:万件)与月份的关系. 模拟函数;模拟函数.

(1)已知4月份的产量为万件,问选用哪个函数作为模拟函数好?

(2)受工厂设备的影响,全年的每月产量都不超过15万件,请选用合适的模拟函数预测6月份的产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设P是圆上的动点,点D是P在x轴上的投影,M为线段PD上一点,且

(1)当P在圆上运动时,求点M的轨迹C的方程;

(2)求过点(3,0)且斜率为的直线被轨迹C所截线段的长度.

查看答案和解析>>

同步练习册答案