精英家教网 > 高中数学 > 题目详情
已知函数.
(1)若函数处取得极值,且函数只有一个零点,求的取值范围.
(2)若函数在区间上不是单调函数,求的取值范围.
 (1);(2).

试题分析:(1)函数处取得极值,知,再由函数只有一个零点和函数的图象特点判断函数的极大值和极小值和0的大小关系即可解决,这是解决三次多项式函数零点个数的一般方法,体现了数形结合的数形思想;(2)三次函数的导函数是二次函数,要使三次函数在不是单调函数,则要满足导数的,要使函数在区间上不是单调函数,还要满足三次函数的导函数在上至少有一个零点.
试题解析:(1),由
所以
可知:当时,单调递增;当时,单调递减;
时,单调递增;而.
所以函数只有一个零点,解得的取值范围是.
.由条件知方程上有两个不等的实根,且在至少有一个根.由 ;
使得:.
综上可知:的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知.
(1)当时,求曲线在点处的切线方程;
(2)若处有极值,求的单调递增区间;
(3)是否存在实数,使在区间的最小值是3,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求函数的单调区间;
(2)若函数满足:
①对任意的,当时,有成立;
②对恒成立.求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围. (注:是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数
(1)求曲线在点处的切线方程;  (2)当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点在曲线(其中为自然对数的底数)上,为曲线在点处的切线的倾斜角,则的取值范围是       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线上存在垂直y轴的切线,则实数a的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在上的函数,则曲线在点处的切线方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点P在曲线上,为曲线在点P处的切线的倾斜角,则的取值范围是(   )
A.B.C.D.[0,)

查看答案和解析>>

同步练习册答案