精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x}(x≥0)}\\{lo{g}_{3}(-x)(x<0)}\end{array}\right.$,函数g(x)=[f(x)]2+f(x)+t,t∈R,则下列判断不正确的是(  )
A.若t=$\frac{1}{4}$,则g(x)有一个零点B.若-2<t<$\frac{1}{4}$,则g(x)有两个零点
C.若t<-2,则g(x)有四个零点D.若t=-2,则g(x)有三个零点

分析 由题意作函数f(x)=$\left\{\begin{array}{l}{{3}^{x}(x≥0)}\\{lo{g}_{3}(-x)(x<0)}\end{array}\right.$的图象,再讨论t以确定[f(x)]2+f(x)+t=0的解与解的位置,从而结合图象解得.

解答 解:作函数f(x)=$\left\{\begin{array}{l}{{3}^{x}(x≥0)}\\{lo{g}_{3}(-x)(x<0)}\end{array}\right.$的图象如下,

当t=$\frac{1}{4}$时,由[f(x)]2+f(x)+t=0得f(x)=-$\frac{1}{2}$,
故结合图象知g(x)有一个零点;
当-2<t<$\frac{1}{4}$时,[f(x)]2+f(x)+t=0有两个根,
其中一根小于-$\frac{1}{2}$,另一根大于-$\frac{1}{2}$且小于1;
故结合图象知g(x)有两个零点;
当t<-2时,[f(x)]2+f(x)+t=0有两个根,
其中一根小于-$\frac{1}{2}$,另一根大于1;
故结合图象知g(x)有三个零点;
故C不正确,
故选:C.

点评 本题考查了分段函数的应用及方程的根与函数的零点的关系应用,同时考查了数形结合的思想应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设x,y满足约束条件$\left\{\begin{array}{l}{x+y≤1}\\{x+1≥0}\\{x-y≤1}\end{array}\right.$,则目标函数z=$\frac{y}{x-2}$的取值范围为(  )
A.[-3,3]B.[-2,2]C.[-1,1]D.[-$\frac{2}{3}$,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy中,点F为抛物线x2=8y的焦点,则点F到双曲线x2-$\frac{{y}^{2}}{9}$=1的渐近线的距离为$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知极坐标的极点与直角坐标系原点重合,极轴与x正半轴重合,曲线C的参数方程$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α为参数),曲线E的方程为$\left\{\begin{array}{l}{x=3-t}\\{y=2t-5}\end{array}\right.$.
(1)求曲线C与曲线E的普通方程;
(2)曲线C上的点到曲线E的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设点P在曲线y=x2+1(x≥0)上,点Q在曲线y=$\sqrt{x-1}$(x≥1)上,则|PQ|的最小值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{3\sqrt{2}}{4}$C.$\sqrt{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.二项式(2x-$\frac{1}{2x}$)8的展开式的常数项是(  )
A.-70B.64C.70D.-32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若(x2+$\frac{a}{x}$)5的二项展开式中x7的系数为-10,则实数a=(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)是定义在R上的奇函数,当x∈[-1,0)时,f(x)=x+3,则f($\frac{1}{2}$)=(  )
A.-$\frac{3}{2}$B.-$\frac{7}{2}$C.-$\frac{5}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.
给出下列四个命题:
①若p=q=0,则“距离坐标”为(0,0)的点有且仅有1个.
②若pq=0,且p+q≠0,则“距离坐标”为(p,q)的点有且仅有2个.
③若pq≠0,则“距离坐标”为(p,q)的点有且仅有4个.
④若p=q,则点M的轨迹是一条过O点的直线.
其中所有正确命题的序号为①②③.

查看答案和解析>>

同步练习册答案